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ABSTRACT
We investigate Vy, the cardinality of the value set of a polynomial f of
degree n over a finite field of cardinality q. It has been shown that if f is not
bijective, then V§ < g — (¢ — 1)/n. Polynomials do exist which essentially
achieve that bound. We do prove that if the degree of f is prime to the
characteristic and f is not bijective, then asymptotically V; < (5/6)q.
We consider related problems for curves and higher dimensional varieties.
This problem is related to the number of fixed point free elements in finite

groups, and we prove some results in that setting as well.

1. Introduction
We begin with an arithmetic question which motivated our interest in the group
theoretic problem of estimating the number of fixed point free elements in a

transitive group.
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Let F, be a finite field of ¢ elements with characteristic p and let f(T) be
a polynomial of degree n (n > 1) in F,[T] which is not a polynomial in T7.
The arithmetic question raised by Chowla [Ch] is to estimate the number V of
distinct values taken by f(T) as T runs over F,. Birch and Swinnerton-Dyer
[BS] showed that if the Galois group of f(T) —t = 0 over Fy(t) is the symmetric
group Sy, then

n (_l)k—l
(1.0) Vi = ( X ) 7+ 0(Va),
k=1
where the constant in the error term depends only on n. The above formula was
conjectured by Chowla and others.

In this paper, we are interested in upper bounds for V;. It is clear that V; < ¢
with equality holding if and only if f(7') is a permutation polynomial over Fy. If
Vi < g, then we have the following elementary upper bound for V; as conjectured
in [Mu] and proved in [Wa]:

(1.1) Vi<g-(q¢-1)/n,

Simple proofs of (1.1) have been given by Turnwald [Tu] and Lenstra (personal
communication). We would like to know if the bound in (1.1) is reasonably
good asymptotically when g is large compared to n. This would depend on the
polynomial f(T) in consideration.

It is well known that there is an asymptotic formula for V; in terms of certain
Galois groups (cf. {Co]). More precisely, let G be the Galois group of f(T)~t =10
over F(t) and let N be the Galois group of f(T) — ¢t = 0 over F,(t), where F,
is an algebraic closure of F,. Both groups act transitively on the n roots of
f(T) —t = 0. The geometric monodromy group N is a normal subgroup of the
arithmetic monodromy group G. The quotient G/N is a cyclic group (possibly
trivial). Let xN be the coset which is the Frobenius generator of the cyclic group
G/N. The Cebotarev density theorem for function fields yields the following

asymptotic formula:

12) v, = (1 - ‘%—,‘) 4+ 0(ya),

where Sy is the set of group elements in the coset xN which fix no roots of
f(T) —t = 0. Note that the constant in the above error term depends only on



Vol. 101, 1997 FIXED POINT FREE ELEMENTS 257

n, not on ¢q. Thus, to understand the asymptotic behavior of V;, it suffices to
understand the quotient
||

It is clear that sq > 0 with equality holding if and only if f(T) is an exceptional
polynomial over F, (see [FGS] for a classification of the possible monodromy
groups for exceptional polynomials). Lenstra recently observed that if sq > 0,
then sg > 1/n with equality holding if and only if G = N is a Frobenius group
of order n(n — 1) with n a prime power. Our purpose here is to find the next

possible value for sg assuming s > 1/n. We have

THEOREM 1.1: Let f(T') be a polynomial over F, of degree n > 6 which is not
a polynomial in TP. If sg > 1/n, then sg > 2/n with equality holding if and
only if G = N is a Frobenius group of order n(n — 1)/2 with n a prime power.
In particular, Vy < (1 —2/n)q + On(,/q) unless f is exceptional or G = N is a
Frobenius group of order n(n — 1).

As it will be seen in the next section, our proof of the Theorem above is
significantly harder than the proof of the bound sq > 1/n for sq # 0. In fact,
in addition to some non-trivial elementary arguments, we also have to use the
classification of finite simple groups. We do not know an elementary proof of
Theorem 1.1. It was suggested by Lenstra that if the polynomial f(T) is tame
(i.e. all ramifications of the corresponding cover of P! to P! are tame), then it
should be possible to have an absolute lower bound sq > ¢ for some absoclute
positive constant c. We show that this is indeed the case. Indeed, we only need
to assume that there is tame ramification at oo (or equivalently the degree is
prime to the characteristic).

THEOREM 1.2: Let f(T') be a polynomial over Fy of degree n > 1 with n not
divisible by the characteristic of Fq. Then we have so > 1/6 whenever so > 0.
In particular, either f is bijective or Vy < (5/6)q + On(1/q).

No attempt is made here to optimize the constant 1/6. If n is not a multiple
of p, there will be polynomials whose monodromy groups are S,, or the dihedral
group of order 2n. This shows that 1/6 cannot be improved to any better than
1/e (symmetric groups) or more easily 1/2 (dihedral groups) even for f indecom-
posable and n large. If we assume that all ramification is tame, then we show
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that sg > O implies that so > 16/63 and that the bound is best possible (see
Corollary 4.8).

If we drop the assumption that n is prime to p, then the resuit is false. The
Frobenius group of order p*(p® — 1) can be identified with the group of up-
per triangular matrices in PGL3(p®) and so acts on P'. Moreover, it fixes co.
Thus, there is a polynomial f of degree p* whose geometric monodromy group
is Frobenius of order p*(p® — 1). It can be written down explicitly - it satisfies
f(@P"~Y) = (2P" — z)?" ! and thus f(x) = x(z — 1)P"~1. If p® — 1 divides ¢ — 1,
then the arithmetic monodromy group is equal to the geometric monodromy
group. Thus, s = 1/p® = 1/n.

In terms of the value set, one can compute directly that Vy = qd/(d+1), where
d = {(p* — 1,q — 1) (this has been considered by Miiller, Flynn and Cusick). In
particular, the elementary bound in (1.1) is attained for this polynomial f(x) of
degree n = p® if F, contains F. as a subfield.

Again, our proof of Theorem 1.2 depends on the classification of finite simple
groups. In terms of our motivating question on value sets, this shows that if the

degree n is not divisible by p and if Vy < g, then
(1.3) Vi < 2¢+ O(\/9)-

This is a vast improvement of (1.1) if ¢ is large compared to n and = is not
divisible by p.

Some of the above results can be generalized to coverings of non-singular curves
and even to coverings of higher dimensional varieties. See Sections 3-5. The
higher dimensional value set problem was first considered by Serre [S2] in con-
nection with Hilbert’s irreducibility theorem and the inverse Galois problem. Let
f: Y — Z be a finite morphism of degree n between two absolutely irreducible
m-dimensional (m > 0) quasi-projective varieties defined over F,. Let V; be the
cardinality of the value set f(Y'(F,)). Assume that f is not exceptional over Fg,
i.e., the fiber product Y x z Y with its diagonal removed contains some absolutely
irreducible component of dimension m defined over F. Then, we have the bound

(1.4) Vi < (1 - %) " +0(gm 2.

The weaker estimate

(15) v < (1 - %) g™ +0(gm1?)
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was given in [S2, Theorem 3.6.2]. The higher dimensional bound in (1.4) holds
because there is a similar Cebotarev density theorem for higher dimensional
varieties, see Fried [Fr2, section 4]. More higher dimensional results are given
in Section 5, as well as a direct geometric proof avoiding the Cebotarev density
theorem.

In the special case that G = N, the above group theoretic question about sq
also arises naturally in other context. Let G be a transitive permutation group
acting on a set X of n letters with n > 2. Let Sy be the set of elements of G which
fix no letters of X. A classical simple result of Jordan [Jo] says that |Sp| > 0.
Motivated by number theoretic and algorithmic applications such as the number
field sieve [BLP, Section 9], Lenstra (1990) asked the question of finding a good
lower bound for the quotient

o] .
$0(G) = G|’
see the paper by Boston et al [Bo]. Soon afterwards, Cameron and Cohen [CC]
showed that so(G) > 1/n with equality holding if and only if G is a Frobenius
group of order n(n — 1), where n is a prime power. A simpler proof of the
Cameron-Cohen result is given in [Bo] where the value so(G) is calculated for
several classes of groups. A natural open problem as posed in [Bo, p. 3274] is to
find the next possible bound if sg > 1/n and classify the optimal groups. This

problem is solved here.

THEOREM 1.3: Let G be a transitive permutation group of degree n. One of the

following holds:
(a) G is a Frobenius group of order n(n—1) with n a prime power and so(G) =
1/n;
(b) G is a Frobenius group of order n(n —1)/2 withn an odd prime power and
30(G) = 2/n;

() G = S4(n = 4,50 = 3/8),85(n = 5,80 = 11/30), As(n = 5,6,8¢9 = 2/n),
Z[2(n=2,80 =1/2) or Z/3Z(n = 3,80 = 2/3); or
(d) s0(G) >2/n.

ACKNOWLEDGEMENT: The second author would like to thank H. W. Lenstra,
Jr for valuable discussions on the above problem about sg. We would also like to
thank Peter Miiller and Michael Zieve for comments on an earlier version of the
paper and Michael Fried for discussions on the Cebatorev density theorem.
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2. The case G=N

In this section, we prove the group theoretic Theorem 1.3. Let G be a transitive
permutation group acting on a set X of n letters. To prove the theorem, we
first derive some elementary bounds which relate the number sg to the minimal
degree p of the group G. Recall that p is the minimal number of elements moved
by a non-identity element of G. A detailed investigation of the minimal degree
is given in Liebeck-Saxl [LS].

We digress slightly for a brief discussion of Frobenius groups. See [Pa] for more
details. G is said to be regular on X if no nontrivial element fixes a point. G is
called a Frobenius group on X if G is not regular on X but no nontrivial element
fixes more than 1 point. If G is Frobenius, it follows by character theory that
G contains a normal subgroup A acting regularly (and in particular transitively)
on X. Thus, |A| = n and we can identify X with A. If G is regular or Frobenius,
it follows that |G| = nd where d|(n — 1). Thus, s = (n — 1)/dn.

We consider two special cases. If d = n—1, it follows that any two nonidentity
elements of A are conjugate in (G, whence A is an elementary abelian p-group
for some prime p (and so n is a power of p). If d = (n — 1)/2, there are two
conjugacy classes (in G) of nonidentity elements in A each of size d. It is an easy
exercise to prove that this again implies that A is an elementary abelian p-group
for some prime p (necessarily odd) and n is a power of p.

More generally, it follows by a result of Thompson that for any Frobenius group
the normal subgroup A is nilpotent.

For 0 < i < n, let S; be the set of elements of G which fix exactly ¢ letters of
X. Define s; = 5;(G) = |S;|/|G|. It follows from the definition that s, = 1/|G|
and s,_; =+ = 8p_py1 = 0, where p is the minimal degree of G. We want to
estimate sg. Trivially, we have the relation

(2.1) so+s81+8+--+s, =1

To derive more relations among the numbers s;, we define X; (1 < j < n) to
be the j-fold Cartesian product with all diagonals removed. Namely, the set X;
consists of all j-tuples from X with all coordinates distinct. Let r; be the number
of orbits of X; under the coordinate-wise action of G. Since G is transitive, we
have r; = 1. We may apply Burnside’s formula (or use elementary character
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theory) to the action of G on X; and deduce the following relations:

n .
i r; .
(22) Z(.)si=—?,—, 1<j<n.
—\J 3!
=7
To estimate sg, we try to eliminate some of the numbers s; from the above
relations. Subtract (2.1) from the first equation of (2.2), one sees that

r L fi—-1
(2.3) 30—1—1'—(1—s0) ;( . )gi.

Multiply equation (2.3) by n/2 and subtract the second equation of (2.2), one
checks that

(2.4) @_%zgwsizo_

This immediately gives the previously known bound so > ro/n(> 1/n) with
equality holding if and only if all s; =0 for 2 < i < n, namely, G is a Frobenius
group of order n(n — 1) or Z/2 (for n = 2).

To obtain finer bounds, we need to make use of r3. Multiply the second
equation of (2.2) by (n—2)/3 and subtract the third equation of (2.2), we deduce
that

oy Gmnon Femaeon

3!
i=2

Now, we eliminate s,_, from (2.4) and (2.5). Multiply (2.4) by (n — u)/3 and
subtract (2.5), it follows that

n—,u(nso Tz)_(’fl— T2 =73 _ Z ("—Z("_N_i)(i_l)sizo_

3 V2 2

Solving this inequality, we derive the bound

n—2)rg—r
(26) w2 o

Note that the last term in (2.6) is always nonnegative in view of (2.5). It is
strictly positive unless G is a Frobenius group (i.e., s = «-- = s, = 0). If
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G is a Frobenius group, then so = (n — 1)/|G| and so so > 2/n unless |G| =
n(n — 1) or n{n — 1)/2. Since the one point stabilizer G, acts as fixed point
free automorphisms of the regular normal subgroup N of G, it follows easily that
n = |N| is a prime power.

If n < 6, Theorem 1.3 follows by inspection of the various primitive groups.
To prove the theorem, we may therefore assume that n > 6,7, =1land 1 <r3 <
n — 2; namely, G is 2-transitive but neither 3-transitive nor sharply 2-transitive
(since n > 6). We shall assume this condition throughout the remainder of this
section. Thus, the bound in (2.6) reduces to
1. n-(s+2)

(27) 80 > " n(n — u)

We want to prove that so > 2/n. Note that the number (r3 + 2) in (2.7) is just
the number of orbits of the stabilizer of two letters acting on X since G is doubly

transitive. By (2.7), we have
LEMMA 2.1: If (r3 + 2) < p, then sg > 2/n.

We now derive a simple bound for r3 + 2 in terms of p. Multiply the second
equation of (2.2) by (n — p — 2)/3 and subtract the third equation of (2.2), one

computes that

(n-p-2)-rs n{n-1pu

(28) 3! = 3G
Namely,
(2.9) (r3+2) <n—p+[n(n-1)u/lG,

where [z] denotes the integral part of .

As a trivial application of (2.9), we have r3 +2 <n— %,u since |G| > n(n —1)2
for G 2-transitive but not sharply. The equality (r3 +2) =n — %u holds only if
|G| = n(n — 1)2. This can also be proved directly: the number (r3 + 2) of orbits
of the stabilizer of two letters is the sum of the number (< n — ) of orbits of
length one and the number (< p/2) of orbits of length greater than one.

By (2.7) and the remark above, we have:

LEMMA 2.2:
(a) If p > 2n/3, then so > 2/n; ‘
(b) If p = 2n/3, then sg > 2/n unless Gy is a subgroup of order 2.
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Remark: Manning’s (cf. [Wi] ) classical bound g > n/3+ O(y/n) together with
(2.9) easily gives the weaker inequality sp > (3 — €)/n if sp > 1/n. But thisis a
little far from the optimal 2/n.

We still assume G is 2-transitive and neither sharply 2-transitive nor
3-transitive.

We first consider the affine case. So G is a 2-transitive subgroup of AT'L4(q),
the group of affine semilinear transformations of a d-dimensional space V of
F, with n = ¢%. Note that we can identify V as a subgroup of G (acting via
translation) and G = VGg, where Gy is the stabilizer of 0. So Gy is a subgroup
of TL4(q), the group of semilinear transformations.

LEmMMA 2.3:
(a) Ifd > 1, then u > (¢ —1)n/q.
(b) Ifd =1 and q is prime, then p=q— 1.
(c) Ifd =1 and q = ¢§ with e prime and minimal, then u > g — qo.

Proof: Let 1# g € G fixing 0 which moves the fewest points. We may assume
that g has prime order. If g is linear, then its fixed points form a proper subspace
and so ¢ moves at least ¢ — ¢%~1 points. Otherwise, g is conjugate to a field
automorphism (this follows by Lang’s theorem). It follows that the number of
fixed points is g¢ where ¢ = g§. If d > 1, the linear case is worst possible. If

d =1 and q is prime, then only the linear case occurs. |

Combining Lemma 2.2 and Lemma 2.3 yields that so > 2/n unless ¢ < 3 or
d=1landgq=4o0r9. Ifd=1and ¢ =4 or 9, then the result follows easily by
inspection.

Moreover, if ¢ = 3, the result follows from Lemma 2.2(b) unless p = 2n/3 and
G, has order 2. Let 1 # g € Gg,. If d = 1 or 2, the result follows by inspection.
Let g # h be a conjugate of g in G (since Gy is transitive on the nonzero vectors
in V, such h exists). Then g and h are trivial on some d — 2 dimensional space
and so are both contained in Gy, for some w. This contradicts the fact that Gy,
has order 2.

So we may assume that ¢ = 2. If d < 2, the result follows by inspection. If Gy
does not contain any transvections (i.e. unipotent elements fixing a hyperplane),
then p > 3n/4. Lemma 2.2 gives sg > 2/n. Thus, Gy is a transitive subgroup on
V — {0} of GL4(2) containing transvections. It follows by McLaughlin [Mc| that
Go = SL4(2) or Sp,(2) (with d > 4 even in the last case). In the first case, Gg
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is 2-transitive on V' — {0} and so G is 3-transitive. In the latter case, G, has
3 orbits on nonzero vectors (depending upon the inner product with v) and so
r3 + 2 =4. Since y = n/2 and n > 16, the result holds here by Lemma, 2.1.

In fact, one does not need to use McLaughlin’s result here. If d < 3, this is
obvious. For d > 3, we can find three transvections which act irreducibly on a
3-dimensional space. If d > 3, this group is contained in Gy, for some w. Then
r3+2 < n/4 and p = n/2. The result holds here by Lemma 2.1.

This completes the proof for the bound s¢ > 2/n for G in the affine case (note
that this also completes the proof for the general result if G is solvable).

We now assume that G does not preserve an affine structure on the set. We are
still assuming that G is 2-transitive but not 3-transitive. It follows easily that G
contains a simple nonabelian normal subgroup L with L C G C Aut(L) (cf. [Wi,
Ex. 12.4]). The following table lists all such 2-transitive groups aside from the
cases where L is alternating or a Mathieu group (in which case L is 3-transitive
— note that Mq; has a multiply transitive representations of degree 11 and 12).

The table lists the simple group L, the permutation degree n, an upper bound
for n — p and an upper bound for r3 + 2.

Unfortunately the table depends upon the classification of finite simple groups
(see Kantor [Kal):

Table 1. 2-Transitive Almost Simple Groups

L n n—p r3+ 2
Ly(g),4 < ¢, g not prime  g¢+1 g2 41 4
Ly(p),4 < p, p prime p+1 2 4

Sz(q),q = 2%t > 8 g?+1 #P+1 q+3
2Gy(q),q = 3%+ > 27 #+1 g+1 Pt
Us(q),q > 2 and nonsquare ¢+ 1 g+1 3g+2
Us(g) g square @ +1 @2 +1 3q+2
La(q),d2 3 (@ -1/@~1) (@'-1/g-1) 4
Spoq(2),d > 3 92d-1 4 9d-1 92d—2 4

Az 15 7 4
Ly(11) 11 3 4
Ly(8) 28 4 16
HS 176 16 5

Cos 276 36
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A few comments are in order about the table. In all cases except L = L(8),
L itself is 2-transitive. The information for the last five cases can be read off
from [ATLAS]. If L = Lg4(qg), the action is on the 1-spaces (or hyperplanes) of
a d-dimensional vector space over F and all quantities are easy to compute. If
L = Us(q), the action is on singular 1-spaces (singular with respect to a hermitian
form) in a three dimensional space over F g2 and the estimates are quite easy to
obtain.

If L = Sz(q) or 2G3(q), these estimates follow easily from well known properties
of the groups (cf. [HB, 10.3.10, 11.13.2]).

Finally, if L = Sp,4(2), then G = L and the point stabilizers are O;Cd(2) and
the action on the nontrivial orbit is just the natural action of the orthogonal
group on singular vectors. This easily gives r3+2 = 4. The maximum number of
fixed points for a nonidentity element is bounded by 1+ k where k is the number
of singular vectors in a hyperplane.

In all cases, it follows that r3 + 2 < p (except L = Lo(p) & A5 with p =5 and
n = 6 — in that case, it follows that sg = 1/3 =2/n if G = L and sy > 2/n for
G = PGL4y(5)). The proof of Theorem 1.3 is complete. ]

To conclude this section, we note that for those groups G with ro = 1 and
r3 < 2, an absolute positive lower bound for sg can be obtained. In fact, by an
inclusion-exclusion argument, one sees that the alternating sum of equation (2.1)
with the first three equations of (2.2) gives that for n > 3,

w3 (()-()+ () - ()

=1- = _
TR
T2 T3
2.10 = — - —,
(2.10) 5 "%

This can also be checked directly from the the following inclusion-exclusion

0-0-0-0{3 5
0/ \IJ " \2/ \3/ <o, ifi>s3,

and the fact that s,, = 1/{G| > 0. In particular, we have

inequality

COROLLARY 2.4: Letn > 3. If r3 = 1, then s9 > 1/3. If ro = 1 and r3 = 2,
then so > 1/6.
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A similar inclusion-exclusion argument shows that for n > 2,

<2 ((6)-()+ ()

™ T2

:1—— ——

1+2!
T2
2.11 = —.
(2.11) 5

Thus, we have

COROLLARY 2.5: Let n > 2. If ry =1, then sg < 1/2.

3. The general case

In this section, we study the general case when G may not be equal to N. Let
G be a group with a normal subgroup N with G/N cyclic. Let z denote a
generator for G/N. We generalize the notions discussed earlier. We have a
complete generalization of Theorem 1.3 only for those pair (G, N) which comes
from a covering of connected smooth projective curves with a totally ramified
F,-rational point. First we note the following easy result (which is essentially
proved in [FGS, §13]). We give a different proof suggested by Miiller.

LEMMA 3.1: Let G act on a finite set X. Let ¢ denote the following permutation
character: ¢(g) = |X9|. Let r = r(X) be the number of common G, N orbits on

X. Then
(1/IN]) > elg)=r.

gexN
Proof: Clearly, we may assume that G is transitive on X. Note that IV is also
transitive on X if and only if g has a fixed point for some g € N. So, N is not
transitive if and only if both sides of the equation are 0. So assume that G’ and
N are both transitive (so r = 1).
Set
Y = {(zg,w) € zN x X|zg(w) = w}.

Let G, be the point stabilizer in G of w (and similarly for N). On one hand, |Y| =
> gexn ®(9)- On the other hand, if w € X and zg fixes w, then G,NzN = xgN,,.
In particular, there are |N,| elements in G, N zN. Thus, |Y] = [X||N,| = |N|

as desired. |
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Now assume that G and N are both transitive on X. We will denote the
cardinality of X by n. By passing to a quotient, we may always reduce to the
case that G is faithful on X. We assume that from now on.

Let S; be the set of elements in the coset /N which fix exactly ¢ elements
of X. Let s; = |S;|/|N|. Let r; be the number of common G, N orbits on the
i-fold cartesian product of X with the diagonals removed (so all coordinates are
distinct).

We first note that:

LemMa 3.2: The following are equivalent:
(a) ro=0;
(b) so=
(c) every element in the coset N fixes a unique point;
(d)
(e) every element in the coset xN fixes at least one point.

every element in the coset N fixes at most one point;

Proof: The equivalence of (c)—(e) follows from Lemma 3.1 (see also [FGS, 13.1]).
Clearly (b) and (e) are equivalent. Note G(a,b) = N{a,b) if and only if some
element in N fixes (a,b). So ro # 0 is equivalent to some element in TV fixing
at least two points. Thus, (a) is equivalent to (d). ]

The triple (G, N, X) is called exceptional if it satisfies the above conditions. If
G is the arithmetic monodromy group of a branched covering (always separable)
of connected smooth projective curves over a finite field and N is the geometric
monodromy group, then these triples correspond to exceptional coverings (see
[FGS]).

LEMMA 3.3: Let H be a point stabilizer of some point of X. Let K be a subgroup
of G containing H. Let Y be the coset space G/K and Z the coset space K/H.
(a) so(G,N,X) > so(G,N,Y);
(b) if (G, N,Y) is exceptional, then so(G,N,X) = so(K,NN K, Z); and
(¢) (G,N,X) is exceptional if and only if (G,N,Y) and (K,N N K,Z) are

exceptional.

Proof: Since N is transitive, it follows that G = HN = KN and so z(N N K)
generates K /{N N K). If z fixes no point in Y, then clearly it fixes no point in

X, whence {a).
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Assume that (G, N,Y) is exceptional. Let A, denote the stabilizer of a point
y € Y. Then zN is a disjoint union of the xkNNK,,y € ¥ (since each element of
N fixes a unique point of ¥). The number of fixed point free elements in each
intersection is independent of y (since these sets are all conjugate). Thus, the
number of fixed point free elements on X is |Y|So(K, K NN, Z) and (b) holds.

If X is exceptional, then (a) implies Y is. On the other hand, if Y is exceptional,
then (b) implies that X is exceptional if and only if Z is. This proves (c), which
can also be easily deduced from Lemma 3.2. |

In [FGS], it was proved that if (G, N, X) is an exceptional triple with G prim-
itive on X which corresponds to an exceptional covering of connected smooth
projective curves over a finite field with a rational point that is totally ramified
(e.g., if f is an exceptional polynomial), then G was shown to be either a solvable
group of prime degree or an affine group of degree a power of the characteristic
or one additional infinite family in characteristic 2 or 3. Moreover, the previ-
ous lemma shows that any exceptional covering is a composition of primitive
exceptional coverings (see [FGS]).

Now assume that ro > 1. Arguing exactly as in Section 2, we obtain:

— Npy —
(3.1) o>y (=278
n n(n — p)

Moreover, the last term on the right is strictly positive unless for each (a,b)
with G(a,b) = N(a,b), Gop = 1. Since G = NG, this implies that G = N and
G is a Frobenius group. This case has already been handled. Lemmas 2.1-2.2
are also valid in the present more general case.

Thus, we have shown:

LEMMA 3.4

(a) If r9 > 0, then either sq > ro/n or G = N is a Frobenius group (or regular
group) on X.

(b) If G = N is a Frobenius group (or regular group) on X, then sq = ry/n.

(¢) Ifrg > 1, then sg > 2/n with equality holding if and only if either G = N
is a Frobenius group of order n(n — 1)/2 with n an odd prime power or
G = N is cyclic of order 3.

(d) Ifro = 1, then so > 1/n with equality if and only if G = N is a Frobenius
group of order n(n — 1) with n a prime power or G = N is cyclic of order
2.
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If G is a Frobenius group and G # N, then every element in zN has at most
one fixed point, whence exactly one and so G is exceptional.

LeEMMA 3.5: If G is not primitive on X, then one of the following holds:
(a) so > 2/n;
(b) (G, N, X) is exceptional; or
(¢) n =4, G has order 8, N has order 4 and sq = 2/n.

Proof: If ro = 0, then the triple is exceptional. If ro > 1, then sp > 2/n unless
G is Frobenius of order n(n — 1)/2 and so is primitive.

So we may assume that ro = 1. If G = N, then G is 2-transitive and primitive.

First consider the case that n = 4. It follows that G is a 2-group (otherwise
G is 2-transitive). If it has order 4, then G acts regularly, whence sq > 3/n.
Otherwise, G is dihedral of order 8. f G = N, s = 5/8. If G # N, then N
has order 4 and since every nonidentity element has either 0 or 2 fixed points,
s0=1/2.

Suppose G is not primitive on X. Let H be the stabilizer of a point in X and let
H<K<G. SetY =G/K. If (G,N,Y) is not exceptional, then so(Y) > 1/m
where m = [G: K]. Clearly, so(Y) > so (by Lemma 3.2). Thus, so(Y) > 2/n
with equality possible only if n = 2m and G acting on Y is a Frobenius group
order m{(m — 1). If g € N has no fixed points on Y, then clearly this is also
true on X. The number of such elements is |So(Y)| > (2/n)|N|. If m > 2, then
some element in N acts nontrivially on Y but with fixed points. We may then
assume that x € K. Since KNN #HNN (asG=HN = KN and K > H), we
may also assume that x ¢ H. Then z has a unique fixed point on Y. Thus, the
only possible fixed points for z on X are gH with g € K. Since ¢ ¢ H, z fixes
no such point and so has none on X. Hence so > so(Y) > 2/n. If m = 2, then
n =4 and (c) holds.

If (G,N,Y) is exceptional, then (K,N N K,Z) is not (where Z = K/H).
Then each element in xN fixes a unique coset of K, whence (Lemma 3.2) so =
so(K,NNK,Z) > 1/m where m = [K: H]. Since degree 2 permutation repre-
sentations are not exceptional, m > 2. Hence so > 3/n. |

One can use induction and the previous result to show that if X = G/H and
there is a chain of subgroups H = Hy < Hy; < -+ < Hy < G, then either X is
exceptional or sq > 241 /n.
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We would like to classify all triples with sy < 2/n. By the previous lemmas, it
suffices to consider the primitive case.

We will not classify all possibilities, but we assume that G is the arithmetic
monodromy group of a branched covering of connected smooth projective curves
defined over a finite field and N is the geometric monodromy group. Moreover,
we will further assume that there is a totally ramified F,-rational point (e.g., a
polynomial map from P! to P! — so oo is the totally ramified point). Without loss
of generality by Lemma 3.5, we also assume that the covering is indecomposable
of degree n. Thus, G is a primitive (faithful) permutation group of degree n.

As noted above, exceptional groups (corresponding to monodromy groups of
exceptional covers with a totally ramified rational point) were essentially classified
in [FGS] (exactly which affine groups are possible was left open). In [GS], a list
of possibilities for G (and the permutation action) were determined.

THEOREM 3.6: Let a: X — Y be a separable branched covering of degree n
with X,Y, a defined over F,. Assume moreover that one of the branch points is
totally ramified and is F j-rational. Let p be the characteristic of F'. Let G be the
arithmetic monodromy group of the covering and N the geometric monodromy
group. Then one of the following holds:
(a) ro = 0 and the covering is exceptional;
(b) ry =1, 80 =1/n and G = N is Frobenius of order n(n — 1) with n a prime
or p%;
(c) 72 =2, 50 = 2/n and G = N is Frobenius of order n(n — 1)/2 with n an
odd prime or p* (with p > 2);
(d) so > 2/n; or
() n<6,G=Nand1l/n<sy<2/norn=4,|G/N|=2and sp =2/4

Proof: By Lemma 3.5, we may assume that the cover is indecomposable (over
F,). By the preceding remarks, we may assume that ro = 1.

First assume that G is affine and n = r® for some prime power r. By Lemmas
2.2 and 2.3, it follows that sy > 2/n unless n = 4 or 9 or r < 3. We identify X
with a vector space V of over the field of 7 elements. Then Gy, the stabilizer of
0, is a group of semilinear transformations on V.

Ifn=7r =4, then G = Ay or S;. If G = A4 and N has order 4, then G is
exceptional. If G = N = Ay, then G is Frobenius.

If n = 9, then by inspection it follows that either G = N is Frobenius, G is
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exceptional, or sg > 1/3.

Next assume ¢ = 3, n = 3° > 9 and ro = 1. It follows from Lemmas 2.2
and 2.3 that either G is Frobenius, sg > 2/n or we may assume that z is a
reflection and Gg, has order 2 for any v # 0 fixed by z. If w is fixed by z, then
G(0,w) = N(0,w). Since ro = 1, it follows that the nonzero elements of the fixed
hyperpiane W of x is contained in a single Go-orbit. Let u be a vector in the —1
eigenspace of z. Since Gg, = (), the centralizer of z is transitive on the nonzero
elements in W. Moreover, since Gy is irreducible on V' (by primitivity), it follows
that Gou = Ggv. Thus, some reflection z’ centralizes u. Since a > 2, z and z’
both fix some nonzero vector w in W. Then Gg ., has order greater than 2. Since
v and w are in the same Gy-orbit, the same is true for Go ,, a contradiction.

Now assume r = 2, n = 2% > 4, and ro = 1. We may assume that z fixes 0.
If Ny does not contain a transvection, then the minimal degree of an element
in N is (3/4)n and so > 2/n (by the argument of Lemma 2.2). So we may
assume that x is a transvection. Let W be the fixed hyperplane of z. Since
N(0,w) = G(0,w) for any nonzero element of W and ro = 1, G(0,w) = G(0,v)
and all nonzero vectors of W are in the same Gp-orbit.

Let H be the subgroup of Gy generated by transvections. Since all nonzero
vectors in W are in the same Gg-orbit, for each 0 # w € W, there is a transvec-
tion 7, centered on w. This implies that the only possible nontrivial invariant
subspace is W. Since H is normal in Gy, this would imply that Gg would leave W
invariant, a contradiction. It follows by [Mc] that the only irreducible subgroups
of GL(V)) for which a single orbit contains all nonzero vectors in a hyperplane
are SL(V') or Sp(V). Now argue as above.

It follows by [GS] that in the affine case n = p®, n is prime or n = 4.

So we may assume that G is not affine. Now using [GS], we have the following
cases to consider:

(i) F*(G) = L is simple and is given [GS, 3.1];

(ii) F*(G) = L x L with L simple and n = 4p?®, p odd given in [GS, 4.2];

(ifi) F*(G) = PQF(q), m = al¢® — 1)/(2,q~ 1) with g > &
(iv) n = p°.

We first note that if G is 2-transitive (in particular, if G = N and r; = 1), then
we argue precisely as above in the 2-transitive case. If G is a rank 3 permutation
group (i.e. G, has three orbits), then 72 = 0 or 7, = 2 and we are done.

Consider (i). The following are immediate consequences of [GS, 3.1]. If L is
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a sporadic simple group, then ro > 1 or G is 2-transitive. If L is an alternating
group {which is not a classical group), then G is either 2-transitive or rank 3.
Moreover, L is not an exceptional Chevalley group. Thus, the remaining case is
L classical.

In case B(i) of [GS, 3.1], L is an even dimensional unitary group (at least 4
dimensional) or an orthogonal group (of dimension at least 3 and + type in even
dimension) and the point stabilizer (in L) may be taken to be the stabilizer of
a nonsingular 1-space (of — type if L is an odd dimensional orthogonal group).
Note that case (iii) above also is of the same type (except that L is not simple). In
the unitary case, it follows that ro > 1 (the pairs of 1-spaces represented by (u, v)
with (u, v)/(u,u) either 0 or 1 correspond to L-orbits which are Aut(L)-orbits).
Similarly, ro > 1 for orthogonal groups in dimension at least 4 for fields of odd
characteristic and even dimensional orthogonal groups in even characteristic.

Next consider the three dimensional orthogonal groups. In this case, L =
Q3(q) = La(g). We may assume that ¢ > 4. If ¢ = 4, G is 2-transitive and if
q = 5, G is rank 3, so we may assume that ¢ > 5. We can identify X with the
set of orbits of size 2 on P! of the field automorphism o defined by a — a¥.

We claim that any nonidentity element fixes at most (4/¢)n points. It suffices
to consider elements of prime order. If g has odd prime order, then it fixes an
orbit of size 2 of o only if it fixes each point. If g € PGLy(g), then g fixes
at most 2 points in P!, whence g fixes at most 1 point in X. Otherwise g is
conjugate to an element inducing a field automorphism, whence g fixes at most
(¢*/® — ¢*/3)/2 points on X and the claim holds. If g is an involution and
g € PGLy(q), then g fixes at most (29 + 4)n/(¢? — q) points and the claim holds.
Finally, if g is an involution conjugate to a field automorphism, then ¢ will fix
at most (go + 1)n/(g + 1)go points on X, where g2 = ¢ (note ¢ is a square in
this case). In particular, p > (2/3)n for ¢ > 11. It follows by Lemma 2.2 that
either G is exceptional or that s > 2/n. f¢=8, G=Nandr, =3 or G is
exceptional. If ¢ = 9, one checks directly that ro > 1.

If g = 7, then either G = N and rp = 6 or |G/N| = 2. In the latter case, we
compute that ro =1 and sp = 1/3.

It follows by [FGS] that G is exceptional only if G = Aut(L) with ¢ = r° for
r=2,3and ¢ odd (and L < N < M where M/L is the Frattini subgroup of
G/L).

Next consider L = Qg,41(2%) = Sp,,,,(2%). Then Aut(L) has order a. It
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follows that u > (2/3)n (cf. [LS]) for a > 1 and we can apply Lemma 2.2. If
a =1, then G is 2-transitive.

The only remaining cases with L classical are given in [GS, Table B]. We may
eliminate the cases where G = N — in particular, those cases where N = Aut(L).
This leaves 4 cases to consider, (L, L,) = (L4(2),GL2(4).2), (L5(2), P2), (2 (2),
Ag) and (P (3),Q23(2)). In all cases, it is verified that ry > 1.

Next consider the case that E = F*(G) = Ly X --- x L, with L; ® L a
nonabelian simple group and E; = K; X --- x K; with K nontrivial. Let £ =
[L;: K;] and n = ¢! with ¢ > 1. Moreover, we assume that the L; and K are all
conjugate in G. Since G/N is cyclic, it follows that E < N. We further assume
that K acting on L;/K; has a nontrivial unique orbit of maximal size. If N is
transitive on the L;, then it is easy to see that ro > 1. Thus, it follows that no
element of the coset N can normalize each L;.

As we observed, we may assume that no element in N normalizes each L;.
This implies that any element of 2N fixes at most (n/f) < n/5 points. We can
apply a version of (2.7) above (with p replaced by the minimal degree of an
element in the coset zN) to obtain sg > (2/n).

By [GS, 4.1 and 4.2], it now follows that so > (2/n) in cases (ii) and (iv) above.
[ |

Remark: There should be a version of the previous result without the assump-
tion that we are dealing with monodromy groups of polynomials (or more gen-
erally coverings with a totally ramified rational point). If ro # 1, it follows from
the earlier discussion. This suggests that a proof may require a classification of
the possibilities with 73 = 1. A proof along the lines of [FGS] might be feasible.
Note that we already had to deal with one case with ro = 1 (but the group was
not 2-transitive) in the proof of the previous result. We do prove a weaker version
of the previous theorem in Section 5.

We conclude this section with a simple lower bound on Vy, which is proved in
the same way as Corollary 2.5.

ProPOSITION 3.7: Let o X — Y be a separable covering of degree n with
X,Y, a defined over F,. Assume that the fiber product X xy X has exactly one
absolutely irreducible component defined over F, other than the diagonal. Then
Vi > ¢/2+0(¢'/?).

Note that rg + 1 is the number of absolutely irreducible components of the
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fiber product above. So the assumption in the previous proposition is equivalent
to ro = 1. The asymptotic result means that we let ¢ — oo in such a way that
the hypothesis is still satisfied (this just amounts to taking extensions relatively
prime to the degree of the smallest field over which every irreducible component
over an algebraic closure of F, of the fiber product is defined). See [U] for a

similar result.

4. Coverings with a totally ramified point

In this section, we show that for coverings of degree prime to the characteristic
with a totally ramified point, an absolute positive lower bound for sg can be
obtained. We note that Corollary 2.4 (with an identical proof) is also valid for

the more general (G, N) case.

THEOREM 4.1: Let f: X — Y be an indecomposable separable covering of degree
n defined over a finite field F, of characteristic p. Assume that f has a totally
and tamely ramified F,-point (so p does not divide n). Let N be the geometric
monodromy group of f and G its arithmetic monodromy group. Then one of the
following holds:
(a) G is a Frobenius or regular group of degree n a prime and either
(i) G # N and the cover is exceptional; or
(ii) G = N has order nd for some df(n — 1) and sp = (n — 1)/dn; or
(b) G and N are 3-transitive of degree n, ro =r3 =1 and so > 1/3; or
(c) G and N are 2-transitive of degree n, ro =1, r3 = 2 and so > 1/6.

Proof: Since f is indecomposable, it follows that G is primitive. Since there
is a totally ramified point (and p does not divide n), N contains an n-cycle. It
follows (cf. [Wi]) that G is 2-transitive or n is a prime and G” = 1. In the latter
case, G is a Frobenius or cyclic group of order nd for some d|(n — 1). The fixed
point free elements in G are precisely the n — 1 elements of order n, whence (a)
holds.

So we may assume that G is 2-transitive and G” # 1. Any 2-transitive group
is either almost simple or affine. The only affine group with G” # 1 containing
an n-cycle is Sy4 (with n = 4) which is 3-transitive. If G = Sy, then since N
contains an 4-cycle and G/N is cyclic, it follows that G = N. More generally, it
follows by inspection of the 3-transitive almost simple groups that N would also
be 3-transitive. Corollary 2.4 yields sp > 1/3 in this case.
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So finally consider the case that G is almost simple and is 2-transitive but not
3-transitive containing an n-cycle. It follows by inspection (see Table 1) that
T3 = 2 in this case. Corollary 2.4 yields so > 1/6. |

We consider in some detail the case G = N is a Frobenius group of order nd
with n prime or cyclic of order n with n prime. We will show that under suitable
conditions that if the genus is small, then so is d. The next results are quite easy
if we assume that all ramification is tame.

We first review the Riemann-Hurwitz formula. See [Ha] and [S1]. Let f: X —
Y be a separable branched covering of connected smooth projective curves X
and Y of degree n. Let B be the finite set of branch points (i.e. those points
that ramify). Let L = F(X) and K = F(Y") be the function fields of the curves.
Let g(X) and g(Y') denote the genus of X and Y. If z € X, define a(x) = v(Dy),
where D, is the different of the extension L./Ky () and v is the corresponding
discrete valuation on L,. Let e = e(z) denote the degree of ramification. We
note the following (cf. [Ha, p. 301] or [S1]):

(a) if there is no ramification, then a(x) = 0;

{b) if there is tame ramification of degree ¢, then a{z) =¢ —1;

() if there is wild ramification (i.e. ple), then a(z) > e.

Set A(y) = 3, -1(y) @(2)- Then (cf. [Ha, p. 301])

2(9(X) —1) =2n(g(Y) - 1)+ > Ay)-

y€B

Let G denote the monodromy group of the cover. Let I, denote an inertia
group of a point over y. If there is only tame ramification over y, then I, = (g,)
and A(y) is ind(gy) := n — orb(gy), where orb{g) is the number of orbits of ¢ in
the associated permutation representation of degree n.

Moreover, if all points are tamely ramified (in particular, if the order of the
monodromy group is not a multiple of the characteristic), then, by a result of
Grothendieck (see [Gr] or [Fu]), we may order the branch points yy,...,y, and
choose g;, a generator for I,, such that G = (g1,...,9-) and g1 --- g, = 1. In any
case, if I, has orbits of size of ny,...,ne, then Ay) > > n}, where n} = n; for
pln; and n} = n; — 1 otherwise.

Now, in particular, assume that p # n is prime and G is a Frobenius group of
order nd (if d = 1, then G is cyclic) as above. Thus, every nonidentity element
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has at most one fixed point. So either g is an n-cycle or a product of (n — 1)/b
cycles each of length b. Thus if w is a point of Y, one of the following holds:

(d) w is totally ramified and A(w) =n — 1;

(e) w is tamely but not totally ramified and A(w) = (b—1){n —1)/b where the

inertia group of a point over w has order b; or

(f) w is wildly ramified and A(w) >n — 1.

In particular, if w is ramified, then A(w) > (n — 1)/2.

We will show below (Theorem 4.5) that these conditions force d small compared
to g(X). In particular, if g(X) = 0, then it is quite easy to see (and follows from
Proposition 4.4) that d < 2 (see also [Frl]). Indeed, the proof shows that the

Galois closure also has genus zero. We state this result separately.

LEMMA 4.2: Let f be a polynomial of prime degree n with n # p. If the
geometric monodromy group N of f is a Frobenius group, then N is either cyclic
or dihedral. Moreover, the Galois closure of the cover f: P! — P! has genus zero
and one of the following holds:

(a) N is cyclic and there are 2 branch points;

(b) N is dihedral, p # 2 and there are 3 branch points; or

(¢) N is dihedral, p = 2 and there are 2 branch points exactly one of which is

wildly ramified.

COROLLARY 4.3: Assume that f: P! — P! is a polynomial over F, of degree n
with n prime to the characteristic p. If sp > 0, then so > 1/6.

Proof:  Since (p,n) = 1, the cover defined by f is automatically separable.
Without loss of generality, we may assume that f is indecomposable over F,. By
Theorem 4.1, it suffices to assume that G = N is Frobenius or regular and n is
prime. By Lemma 4.2, this implies that |G| = n or 2n. Then so = (n —1)/nd >
(n~1)/2n > 1/6. |

In order to obtain an analog of Corollary 4.3 for curves of higher genus, we
need to consider coverings with Frobenius monodromy group with a totally and
tamely ramified point.

We separate out the case of two branch points since the argument is entirely
different.

LEMMA 4.4: Let X be a curve of genus g over an algebraically closed field F' of
characteristic p > 0. Suppose f: X — P! is a separable indecomposable branched
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covering of prime degree n # p with at most two branch points. Let g denote the
genus of X. Assume that there is a branch point that is totally ramified and that
the monodromy group is Frobenius of order nd (so d|(n — 1)). Thend < 2g + 2
(ifp#2,d<g+2).

Proof: Let C be the normal subgroup of G of order n. Let B denote a subgroup
of order d. Let W denote the curve corresponding to the Galois closure of the
covering. Let V denote the curve corresponding to the fixed field of C. Thus,
V/P! is a cyclic cover of degree d. We assume that B corresponds to X in the

Galois correspondence.

Of course, there are no unramified coverings of P!, so that there must be at
least one branch point. If there is a single branch point, then p > 0 and G is
generated by its Sylow p-subgroups. Since y is totally ramified, this implies that
n = p, whence G has order p and d = 1.

So we assume that there are precisely two branch points and d > 1 (since there
is nothing to prove if d = 1).

If both branch points are tamely ramified, then G = (s,t) where s and t
generate inertia groups over the branch points and st = 1. Thus, G is cyclic and
d=1.

Assume y is totally ramified. Then the inertia group of a point over y is cyclic
of order n, whence A(y) = n — 1. Thus, y is tamely ramified and is not a branch
point in the cover V/PL. It follows that V/P! is a cyclic cover of degree d and has
single branch point z, whence d = p* for some a. Moreover, the inertia group of
a point in W over y is C and the inertia group of a point in W over z is conjugate
to B. Let w denote the unique point of W with inertia group B (w lies over z
and since B is its own normalizer, there is only one point in W with inertia group
B).

Let v € V and z € X be the points under w (and so over z). If we complete
at w, then F(W),, = F(V), and F(X), = F(P!),. We identify B with the
monodromy group of the cover V/P!. Thus, the higher ramification groups B; of
v (for V/P') and w (for the cover W/X) agree. Moreover, V/P! and W/X each
are ramified at a single point (z and z respectively) and these points are totally
ramified. Using the Riemann-Hurwitz formula (see also [S1, p. 64]) to compute
the genus (with respect to these two Galois covers), we see that if g(V') and g(W)
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are the genus of V and W, then
29(W)-1)=2d(g— 1)+ Y _(IB| - 1),
i=0

and

2g(V) - 1) = =24+ (IB| —1).
=0

Thus, g(W) = g(V) + dg. On the other hand, W/V is a cyclic cover of degree
n with precisely d branch points each tamely ramified with inertia group C (the
points over y — since the point in V over z is unramified to W). Thus

2(g(W)—~1) =2n(g(V)—1)+d(n—1), and
2dg = (2n - 2)(g(V) - 1) +d(n — 1).

Hence 2g > (d ~ 2)(n — 1)/d > d - 2 and d < 2g + 2. More generally, if we
factor n — 1 = p®m where p does not divide m, we see that d < (2/m)g+2. |

THEOREM 4.5: Let f: X — Y be a branched covering of prime degree n # p
which is tamely and totally ramified at some point y € Y. Assume that the
geometric monodromy group of f is Frobenius of order nd. Let g be the genus
of X and h the genus of Y. Then one of the following occurs:

(a) h>0andg>g—h>d/2;

(b) h=0=g, d <2 and the Galois closure of the cover has genus zero; or

(c) d < 4g.
Proof: Note the inertia group of a point over y acts transitively (because of
the total ramification). Let B denote the set of branch points. We use the
observations (d)—(g) above.

If h > 0, then 2(g — h) > AM(y) = n—1 > d and (a) holds. So assume that
h = 0. The Riemann-Hurwitz formula in this case is:

2ln+g-1)= Z/\

z€B

If |B| < 2, the result follows from the previous lemma (since 4g > 2g + 2 for
g >0).

So assume that |B| > 3. Note that A(w) > (n—1)/2 for every w € B. If some
point z is wildly ramified, its contribution to the Riemann-Hurwitz formula is at
least n — 1, whence 2g > (n —1)/2 > d/2. Thus, d < 4g.
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Similarly, if |B| > 4, it follows that )~ AMw) > 3(n — 1)/2 + (n — 1). Hence,
the Riemann-Hurwitz formula yields 2g > (n —1)/2 > d/2, and again we obtain
d < 4g.

So we may assume that there are three branch points and no wild ramification.
Let y = y1, y2, y3 denote the branch points. Thus, G = (g1, g2, g3) where g1gags =
1 with g; a generator of an inertia group over y;. Since g; has order n, it generates
the normal subgroup C of G. Thus, G/C is generated by the image of g2 and g3
maps to its inverse. Hence go and g3 each have order d. Thus A{y;) =n —1 and
Aly2) = A(yz) = (d—1)(n—1)/d. It follows that 2g = 2(d~1)(n—1)/d—(n—1) =
(n-1)(d-2)/d>d—2. Thus,d <2g+2.

In particular, if ¢ = 0, it follows that d < 2. Another application of the

Riemann-Hurwitz formula shows that the Galois closure has genus 0. |

COROLLARY 4.6: Let f: X — Y be a branched covering of degree n > 1 with n
prime to p which is totally ramified at some F,-rational point y. Let g denote
the genus of X. If sg > 0, then sg > 1/6 for g <1 and sg > 3/14¢ for g > 1.

Proof: Since sy > 1/n, we may assume that n > 7. Without loss of generality, we
may assume that f is indecomposable. By Theorem 4.1, we may further assume
that G = N is a Frobenius group of order nd or cyclic group of n (i.e. d = 1) with
n prime and so sg = (n—1)/dn. If ¢ = 0, then d < 2 by Theorem 4.5, whence the
result. If g > 1, again by Theorem 4.5, d < 4g. Then sq > (n — 1)/4gn > 3/14g.
If g = 1, this is larger than 1/6. ]

Remarks: We do not know if the bound in the previous result is best possible.
It is straightforward to see that if p does not divide n(n — 1) with n > 2 prime,
then we may realize the Frobenius group of order n(n — 1) and degree n as a
group of automorphisms of a curve of genus g = (n — 3)/2, whence sg = 1/n is
approximately 1/2g.

As we have seen, if we do not assume that n is prime to the characteristic, then
the result is false. There should be some version of the previous result where for
example the bound depends only the power of p dividing n. An analysis of the
possible monodromy groups for polynomials will be required (see [GS]).

We can improve Corollary 4.3 slightly if we assume that all ramification is
tame (not just ramification over oo). This essentially follows from the Feit-
Miiller classification of monodromy groups of indecomposable polynomials in
characteristic zero and Grothendieck’s theorem (that a tamely ramified cover
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has a branch cycle description as in the characteristic zero case).

THEOREM 4.7: Let f: P! — P' be an indecomposable polynomial of degree n
defined over a finite field F; of characteristic p. Assume that all ramification is
tame (in particular, p does not divide n). Let N be the geometric monodromy
group of f and G its arithmetic monodromy group. Then one of the following
holds:
(a) n <23 and N is triply transitive;
(b) n is prime, G = N is cyclic of order n and sp = {n — 1)/n;
(¢) m is prime, G = N is dihedral of order 2n and so = (n — 1)/2n;
(d) n is prime, N is cyclic of order n or dihedral of order 2n, N # G and f is
exceptional;
() G=N and
(i) n =11 and G = Ly(11);
(ii) n =13 and G = PGL3(3);
(iii) » =15 and G = Ag;
(iv) n =21 and G = PI'L3(4);
(v) n =231 and G = L5(2); or

(f) A, CNCGCS,.

Proof: By Grothendieck [Gr], we have that N will occur as the monodromy
group of an indecomposable polynomial cover over C. All such possibilities have
been classified in [Mii] (see also [Fe]). |

COROLLARY 4.8: Let f: X — Y be a polynomial covering of degree n defined
over a finite field Fy of characteristic p. Assume that all ramification is tame (in
particular, p does not divide n). Then either sg =0 or sq > 16/63.

Proof: As usual, we may assume that f is indecomposable. We apply the
previous result. If N is 3-transitive, then so > 1/3. The bound clearly holds for
N cyclic or dihedral. So we are left only to verify the bound in (e) above. This
is an easy calculation using [ATLAS]. |

Note that 16/63 occurs when n = 21 and G = N = PI'L3(4). Thus, the bound

is best possible in the previous result.
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5. Higher dimensional varieties

In this section, we briefly discuss some generalizations of the previous curve
results to higher dimensional varieties in the setting of [S2, Theorem 3.6.2].

Let Y and Z be two m-dimensional absolutely irreducible (quasi-projective)
varieties defined over F,. Let f: Y — Z be a generically surjective and separable
morphism of degree n defined over F,, where n is a positive integer. The map f is
actually a finite map if we remove suitable co-dimension 1 subvarieties from Y and
Z. Let D be the (quasi-projective) variety defined by the fiber product Y xz Y
with its diagonal removed. The variety D over F, is also at most m-dimensional
if f is finite. The set D(F,) consists of the pairs (P;, P2) of Fy-rational points
in Y(Fg) such that P; # P; and f(P;) = f(P,). Let V; be the cardinality of the
value set f(Y(F,)).

THEOREM 5.1: If f is a finite map, then we have the inequality

(5.1) v <y (g - 2E

Proof: Since f is a finite map of degree n, for each point P € Z, the inverse
image f~!(P) has cardinality at most n. For 0 < i < n, let s; be the number of
F,-rational points P € Z(F,) such that f~!(P) N Y(F,) has cardinality ;. By
this definition, one then checks directly that

(5.2) (2-1)s2+(3=1)sz+---+ (n—1)s, = |[Y(Fg)| - V;
and
(5.3) 2(2-1)s2+3(38—1)sg+ -+ n(n—1)s, = |D(F,)|.

Multiply equation (5.2) by n and subtract (5.3), we deduce that

(5.4) n(IY (Fo)l - Vi) — |D(Fy)| = > (n—3)i—1)s; 2 0.

3
|

LY
il
)

This immediately gives (5.1). The proof is complete. ]

Definition 5.2: A finite and separable morphism f: ¥ — Z is called excep-
tional over F if the variety D as above has no absolutely irreducible components
of (top) dimension m defined over F,. A generically surjective and separable
morphism f: Y — Z as above is called exceptional if its restriction to some
dense open set is a finite and exceptional map.
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THEOREM 5.3: Let f:' Y — Z be a generically surjective and separable mor-
phism of degree n, where Y and Z are absolutely irreducible m-dimensional
F,-varieties.

(i) If f is not exceptional over Fy, then
1 m m—1/2
(5.5) Vi<{l-—1¢"+0( )-

(i) If f is exceptional over F, then

(5.6) ID(F,)| =0(g™ ), V;=q™+0(q" 3.

Proof: Since any variety of dimension m — 1 over F, has at most O(g™})
rational points over F,, by restricting to suitable dense open subsets of ¥ and
Z, we may assume that f is a finite map. Thus, we may assume that the variety
D has dimension at most m.

In case (i), the non-exceptionality of f shows that the variety [J has at least one
absolutely irreducible component of dimension m defined over F,. The Lang-
Weil estimate (a special case of Lemma 5.5 below) shows that

Y ()| = ¢™+0(g"" ), |D(Fg)|>g¢™+0(g"/?).

Combining with (5.1), we deduce (5.5).

In case (ii), the exceptionality of f shows that the variety D has no absolutely
irreducible components of top dimension m defined over F,. Thus, each F,-
rational point on D (except those on some co-dimension 1 subvariety of D) is
contained in an intersection of two distinct geometric components of D. Such
an intersection has dimension at most m — 1. Thus, the set D(F,) of all F,-
rational points on D is contained in the set of F,-rational points of some variety

of dimension at most m — 1. The Lang-Weil estimate shows that
ID(Fy)| = O(¢"™ ).

This is the first equation of (5.6). Combining with equation (5.3) , one deduces
that s; = O(q™™?) for all 2 <i < n. By (5.4), we then conclude that

(5.7) Vi = [Y(F)| +0(¢™™") = ¢™ + 0(g"™ /%)
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Remarks: 1If f is exceptional over Fg, the crude estimate |D(F,)| = O(g™ 1)
in (5.6) can be greatly improved in some cases. For example, if Y and Z are
absolutely irreducible non-singular projective curves over Fg and f: Y — Z is
exceptional over F, (automatically finite in this case), it is shown in [Le] (already
in [FGS] if Z = P!) that |D(F,)| = 0. More generally, it is shown in [Le] that
|D(F,)| = 0 for exceptional f if one assumes some natural conditions such as
that the map f is finite and that the varieties Y and Z are normal. See also [Fr3]
for earlier results of this nature.

Similarly, the second estimate in (5.6) can also be improved in some cases.
For instance, using Lenstra’s result as above and Deligne’s theorem on Riemann

hypothesis, one derives immediately that

qm+1 -1

Vf = + O(qm/2)7

g—1
if f is an exceptional finite map, Y is a smooth projective complete intersection
and Z is normal.

A similar inclusion-exclusion argument as in (2.11) and the Lang-Weil estimate
shows that Proposition 3.7 carries over to higher dimensional case. We state this

generalization here.

PROPOSITION 5.4: Let f: Y — Z be a finite and separable map between two
absolutely irreducible varieties over Fy. Assume that the variety D has exactly

one absolutely irreducible component of dimension m, then
Vi > 3¢™ +0(@™ ).

To extend other curve results stated in the introduction, we shall need to use
group theory. This can be done exactly as the curve case because of the following
asymptotic formula, which is an immediate consequence of the higher dimensional
Cebotarev density theorem [Fr2].

LEMMA 5.5: Let f: Y — Z be a generically surjective and separable morphism
between absolutely irreducible m-dimensional varieties Y and Z defined over F.
Let G (resp. N) be the arithmetic (resp. geometric) monodromy group of the
map f. Let N be the coset which is the Frobenius generator of the cyclic group
G/N. Then, we have the formula for the value set cardinality Vy = |f(Y (F,))|:

Vi = (1~ s0)g™ + O(g™ /),
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where sq = |Sp|/|N| and Sy is the set of fixed point free elements in N as before.

In the special case Y = Z and f is the identity map (thus so = 0), the above
lemma reduces to the well known Lang—Weil estimate. By Theorem 1.3, we

obtain

COROLLARY 5.6: Let f: Y — Z be a generically surjective and separable map
of degree n between two m-dimensional absolutely irreducible varieties over F,.
Assume that the covering is not exceptional and that the Galois closure of the
covering is regular (G = N). Assume further that the monodromy group is not
a Frobenius group of order n(n — 1). Then for n > 6, we have

2
Vi < (1 - ;) g™ + O(g™ 7,

with equality holding (asymptotically) if and only if G = N is a Frobenius group
of order n(n —1)/2.

Clearly, stronger results such as Theorem 1.2 can also be extended to some
higher dimensional cases for regular coverings with suitable total and tame ram-
ification assumptions. We can prove a slightly weaker version of Theorem 1.1
that applies to higher dimensional varieties and to curves without assuming the
existence of a totally ramified point. We are certain that 5/4 can be replaced by

2 in the next result.

COROLLARY 5.7: Let f: Y — Z be a generically surjective and separable map
of degree n between two m-dimensional absolutely irreducible varieties over F,.
Assume that the covering is not exceptional and that the monodromy group is

not Frobenius of order n(n — 1). Then for n > 6,

5
Vi< 1= 2 ™m0 m-1/2.
f_< 4n)<} +0(q )

Proof: We argue as in the proof of Theorem 3.6. We may assume that f is
indecomposable as a cover. Let G and N be the corresponding monodromy
groups acting transitively on the corresponding set X. By Lemma 5.5, it suffices
to prove that so > 5/4n.

By [LS], it follows that g > n/3 unless E := F*(G) = L1 X --- x L, where
each L; 2 Ay, the alternating group of degree ¢ (with £ > 5). Moreover, we may
assume that in the latter case that the stabilizer in E of a point is the product
of stabilizers of k-sets for some k with 1 < k < £/2.
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If 4 > n/3, then arguing as in section 2, we deduce that so > 5/4n (use the
analog of 2.9).

Consider the remaining situation. If NV not transitive on the set of L; (by con-
jugation), then any element of N (where 2N generates G/N) will not normalize
each L;. It follows that any element of z/V fixes at most n/5 points, and we can
argue as in the previous paragraph (because we only need to know the minimal
degree for elements in the coset TN).

If N is transitive on the L;, then it is straightforward to compute that ro > 2
unless t =1 = k. Then, N is 3-transitive and sy > 1/86.
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