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ABSTRACT 

We invest igate  VI, the  cardinal i ty of the  value set of a polynomial  f of  

degree n over a finite field of  cardinal i ty q. It has  been shown tha t  if )r is not  

bijective, t hen  V I ~ q - (q - 1)/n. Polynomials  do exist  which essential ly 

achieve t ha t  bound .  We do prove t ha t  if the  degree of f is pr ime to the  

character is t ic  and  ] is not  bijective, t hen  asympto t ica l ly  V] ~ (5/6)q. 

We consider related problems for curves and  higher  d imensional  varieties. 

This  p rob lem is related to the  n u m b e r  of fixed point  free e lements  in finite 

groups,  and  we prove some resul ts  in tha t  se t t ing  as well. 

1. Introduct ion  

We begin with an arithmetic question which motivated our interest in the group 

theoretic problem of estimating the number of fixed point free elements in a 

transitive group. 

* Both authors partially supported by the NSF. 
Received July 5, 1995 

255 



256 R. GURALNICK AND D. WAN Isr. J. Math. 

Let Fq be a finite field of q elements with characteristic p and let f(T) be 

a polynomial of degree n (n > 1) in Fq[T] which is not a polynomial in T p. 
The arithmetic question raised by Chowla [Ch] is to estimate the number V/of  
distinct values taken by f(T) as T runs over Fq. Birch and Swinnerton-Dyer 

[BS] showed that if the Galois group of f ( T ) -  t = 0 over ~'q(t) is the symmetric 

group Sn, then 

(1.0) V/ = k! q + O(v/q)' 
k=l  

where the constant in the error term depends only on n. The above formula was 

conjectured by Chowla and others. 

In this paper, we are interested in upper bounds for Vf. It is clear that Vf < q 
with equality holding if and only if f(T) is a permutation polynomial over Fq. If 

Vf < q, then we have the following elementary upper bound for Vf as conjectured 

in [Mu] and proved in [Wa]: 

(1.1) V I <_ q - (q - 1)/n, 

Simple proofs of (1.1) have been given by Turnwald []51] and Lenstra (personal 

communication). We would like to know if the bound in (1.1) is reasonably 

good asymptotically when q is large compared to n. This would depend on the 

polynomial f(T) in consideration. 

It is well known that  there is an asymptotic formula for V / in  terms of certain 

Galois groups (cf. [Co]). More precisely, let G be the Galois group of f ( T ) - t  = 0 
over Fq(t) and let N be the Galois group of f(T) - t = 0 over Fq(t), where Fq 

is an algebraic closure of Fq. Both groups act transitively on the n roots of 

f(T) - t = 0. The geometric monodromy group N is a normal subgroup of the 

arithmetic monodromy group G. The quotient G/N is a cyclic group (possibly 

trivial). Let xN be the coset which is the Frobenius generator of the cyclic group 

G/N. The Cebotarev density theorem for function fields yields the following 

asymptotic formula: 

(1.2) Vy = ( 1 -  ~ )  q + O(v~ ), 

where So is the set of group elements in the coset xN which fix no roots of 

f(T) - t = 0. Note that the constant in the above error term depends only on 
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n, not on q. Thus, to understand the asymptotic behavior of VI, it suffices to 

understand the quotient 

Is01 
so--IN1" 

It is clear that so _> 0 with equality holding if and only if f ( T )  is an exceptional 

polynomial over Fq (see [FGS] for a classification of the possible monodromy 

groups for exceptional polynomials). Lenstra recently observed that  if so > 0, 

then so >_ 1/n with equality holding if and only if G = N is a Frobenius group 

of order n(n - 1) with n a prime power. Our purpose here is to find the next 

possible value for so assuming so > 1/n. We have 

THEOREM 1.1: Let f ( T )  be a polynomial over Fq of degree n > 6 which is not 

a polynomial in T p. I f  So > 1/n, then So >_ 2/n  with equality holding if  and 

only if  G = N is a Frobenius group of order n(n - 1)/2 with n a prime power. 

In particular, V/ <_ (1 - 2/n)q § On(x/~) unless f is exceptional or G = N is a 

Frobenius group of order n(n - 1). 

As it will be seen in the next section, our proof of the Theorem above is 

significantly harder than the proof of the bound so >_ 1/n for so r 0. In fact, 

in addition to some non-trivial elementary arguments, we also have to use the 

classification of finite simple groups. We do not know an elementary proof of 

Theorem 1.1. It was suggested by Lenstra that if the polynomial f ( T )  is tame 

(i.e. all ramifications of the corresponding cover of •1 to p1 are tame), then it 

should be possible to have an absolute lower bound so > c for some absolute 

positive constant c. We show that this is indeed the case. Indeed, we only need 

to assume that  there is tame ramification at ce (or equivalently the degree is 

prime to the characteristic). 

THEOREM 1.2: Let f ( T )  be a polynomial over Fq of degree n > 1 with n not 

divisible by the characteristic of Fq. Then we have So > 1/6 whenever So > O. 

In particular, either f is bijective or V l < (5/6)q § On(v/~). 

No at tempt  is made here to optimize the constant 1/6. If n is not a multiple 

of p, there will be polynomials whose monodromy groups are Sn or the dihedral 

group of order 2n. This shows that 1/6 cannot be improved to any bet ter  than 

1/e (symmetric groups) or more easily 1/2 (dihedral groups) even for f indecom- 

posable and n large. If we assume that  all ramification is tame, then we show 
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that  so > 0 implies that so _> 16/63 and that the bound is best possible (see 

Corollary 4.8). 

If we drop the assumption that n is prime to p, then the result is false. The 

Frobenius group of order pa(pa _ 1) can be identified with the group of up- 

per triangular matrices in PGL2(p a) and so acts on p1. Moreover, it fixes oo. 

Thus, there is a polynomial f of degree pa whose geometric monodromy group 

is Frobenius of order p~(pa - 1). It can be written down explicitly - it satisfies 

f ( x  p~-I) = (x p~ - x) p~ and thus f ( x )  = x(x  - 1) p~ I fp  ~ - 1 divides q - 1, 

then the arithmetic monodromy group is equal to the geometric monodromy 

group. Thus, So = 1/p a = 1/n. 

In terms of the value set, one can compute directly that Vf = qd/(d+ 1), where 

d = (p~ - 1, q - 1) (this has been considered by Miiller, Flynn and Cusick). In 

particular, the elementary bound in (1.1) is attained for this polynomial f ( x )  of 

degree n = p" if Fq contains Fpo as a subfield. 

Again, our proof of Theorem 1.2 depends on the classification of finite simple 

groups. In terms of our motivating question on value sets, this shows that  if the 

degree n is not divisible by p and if Vf < q, then 

(1.3) Vf < 5q + O(V~). 

This is a vast improvement of (1.1) if q is large compared to n and n is not 

divisible by p. 

Some of the above results can be generalized to coverings of non-singular curves 

and even to coverings of higher dimensional varieties. See Sections 3-5. The 

higher dimensional value set problem was first considered by Serre [$2] in con- 

nection with Hilbert's irreducibility theorem and the inverse Galois problem. Let 

f :  Y , Z be a finite morphism of degree n between two absolutely irreducible 

m-dimensional (m > 0) quasi-projective varieties defined over Fq. Let Vf be the 

cardinality of the value set f (Y(Fq)) .  Assume that f is not exceptional over Fq, 

i.e., the fiber product Y x z Y with its diagonal removed contains some absolutely 

irreducible component of dimension m defined over F.  Then, we have the bound 

Vf ~ ( 1 - - 1 )  qm +O(qm-i /2) .  (1.4) 

The weaker estimate 

(1.5) 
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was given in [$2, Theorem 3.6.2]. The higher dimensional bound in (1.4) holds 

because there is a similar Cebotarev density theorem for higher dimensional 

varieties, see Fried [Fr2, section 4]. More higher dimensional results are given 

in Section 5, as well as a direct geometric proof avoiding the Cebotarev density 

theorem. 

In the special case that G = N, the above group theoretic question about So 

also arises naturally in other context. Let G be a transitive permutation group 

acting on a set X of n letters with n > 2. Let So be the set of elements of G which 

fix no letters of X. A classical simple result of Jordan [Jo] says that IS01 > 0. 

Motivated by number theoretic and algorithmic applications such as the number 

field sieve [BLP, Section 9], Lenstra (1990) asked the question of finding a good 

lower bound for the quotient 

s0(G) = I1 11; 

see the paper by Boston et al [Bo]. Soon afterwards, Cameron and Cohen [CC] 

showed that so(G) >_ 1/n with equality holding if and only if G is a Frobenius 

group of order n(n - 1), where n is a prime power. A simpler proof of the 

Cameron-Cohen result is given in [Bo] where the value so(G) is calculated for 

several classes of groups. A natural open problem as posed in [Bo, p. 3274] is to 

find the next possible bound if So > 1/n and classify the optimal groups. This 

problem is solved here. 

THEOREM 1.3: Let G be a transitive permutation group of degree n. One of the 

following holds: 

(a) G is a Frobenius group of order n(n - 1) with n a prime power and so(G) = 

1/n; 

(b) G is a Frobenius group of order n(n - 1)//2 with n an odd prime power and 

so(G) = 2In; 

(c) G = S4(n = 4, so = 3/8) ,$5(n = 5, So = 11/30), A5(n = 5, 6, So = 2In), 

Z /2(n  = 2, So = 1/2) or Z/3Z(n  = 3, so = 2/3); or 

(d) so(G) > 2/n. 

ACKNOWLEDGEMENT: The second author would like to thank H. W. Lenstra, 

Jr for valuable discussions on the above problem about so. We would also like to 

thank Peter Miiller and Michael Zieve for comments on an earlier version of the 

paper and Michael Fried for discussions on the Cebatorev density theorem. 
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2. T h e  case  G = N 

In this section, we prove the group theoretic Theorem 1.3. Let G be a transitive 

permutation group acting on a set X of n letters. To prove the theorem, we 

first derive some elementary bounds which relate the number so to the minimal 

degree # of the group G. Recall that # is the minimal number of elements moved 

by a non-identity element of G. A detailed investigation of the minimal degree 

is given in Liebeck-Saxl [LS]. 

We digress slightly for a brief discussion of Frobenius groups. See [Pa] for more 

details. G is said to be regular on X if no nontrivial element fixes a point. G is 

called a Frobenius group on X if G is not regular on X but no nontrivial element 

fixes more than 1 point. If G is Frobenius, it follows by character theory that 

G contains a normal subgroup A acting regularly (and in particular transitively) 

on X. Thus, IAI = n and we can identify X with A. If G is regular or Frobenius, 

it follows that  IGI --- n d  where dl(n  - 1). Thus, So = (n - 1 ) / dn .  

We consider two special cases. If d = n - 1, it follows that any two nonidentity 

elements of A are conjugate in G, whence A is an elementary abelian p-group 

for some prime p (and so n is a power of p). If d = (n - 1)/2, there are two 

conjugacy classes (in G) of nonidentity elements in A each of size d. It is an easy 

exercise to prove that this again implies that A is an elementary abelian p-group 

for some prime p (necessarily odd) and n is a power of p. 

More generally, it follows by a result of Thompson that for any Frobenius group 

the normal subgroup A is nilpotent. 

For 0 < i < n, let Si be the set of elements of G which fix exactly i letters of 

X. Define si = s i ( G )  = IS~I/IGI. It follows from the definition that s,~ = 1 / I G  I 

and sn-1 . . . . .  sn-t,+l = 0, where # is the minimal degree of G. We want to 

estimate So. Trivially, we have the relation 

(2.1) s o + s 1  + s2 + - . .  + s,~ = 1. 

To derive more relations among the numbers si,  we define Xj (1 _< j < n) to 

be the j-fold Cartesian product with all diagonals removed. Namely, the set Xj 

consists of all j-tuples from X with all coordinates distinct. Let r j  be the number 

of orbits of X j  under the coordinate-wise action of G. Since G is transitive, we 

have r l  = 1. We may apply Burnside's formula (or use elementary character 
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theory) to the action of G on X j  and deduce the following relations: 

(2.2) si = --  1 < j < n. 
i=j J! '  - 

To estimate So, we try to eliminate some of the numbers si from the above 

relations. Subtract (2.1) from the first equation of (2.2), one sees that  

(2.3) so = g - (1 - so) = 1 si. 
i=2 

Multiply equation (2.3) by n / 2  and subtract the second equation of (2.2), one 

checks that  

nso r2 _ Z.., ~ (n - i)(i - 1) s i (2.4) O. 
2 2 2 - 

i=2  

This immediately gives the previously known bound So >_ r2/n(>_ 1/n)  with 

equality holding if and only if all sl = 0 for 2 <_ i < n, namely, G is a Frobenius 

group of order n(n  - 1) or Z/2 (for n -- 2). 

To obtain finer bounds, we need to make use of r3. Multiply the second 

equation of (2.2) by ( n -  2)/3 and subtract the third equation of (2.2), we deduce 

that  

(2.5) (n - 2)r23! - r3 -_ (n - i)i(i3! - 1) s i  > 0. 

i~2 

Now, we eliminate sn-t, from (2.4) and (2.5). Multiply (2.4) by (n - #) /3 and 

subtract (2.5), it follows that  

n--it--1 
n - #  (ns_o ~ )  ( n - 2 ) r 2 - r 3  = ~ ( n - i ) ( n - t t - i ) ( i - 1 )  

3 \ 2 3! ~ 3! s~ > O. 
i=2  

Solving this inequality, we derive the bound 

(n - 2)r2 - r3 (2.6) So _> r2 - - +  
n n ( n  - 

Note that  the last term in (2.6) is always nonnegative in view of (2.5). It is 

strictly positive unless G is a Frobenius group (i.e., s2 . . . . .  sn-1 = 0). If 
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G is a Frobenius group, then So = (n - 1)/[C[ and so So > 2 /n  unless [el = 

n(n  - 1) or n(n  - 1)/2. Since the one point stabilizer Gz acts as fixed point 

free automorphisms of the regular normal subgroup N of G, it follows easily that 

n = INI is a prime power. 

If n _< 6, Theorem 1.3 follows by inspection of the various primitive groups. 

To prove the theorem, we may therefore assume that n > 6, r2 = 1 and 1 < r3 < 

n - 2; namely, G is 2-transitive but neither 3-transitive nor sharply 2-transitive 

(since n > 6). We shall assume this condition throughout the remainder of this 

section. Thus, the bound in (2.6) reduces to 

1 n - (r3 + 2) 
(2.7) So _> - + 

u n(n  - I~) 

We want to prove that so > 2/n .  Note that the number (r3 + 2) in (2.7) is just 

the number of orbits of the stabilizer of two letters acting on X since G is doubly 

transitive. By (2.7), we have 

LEMMA 2.1: I f  (r3 + 2) < #, then So > 2 /n .  

We now derive a simple bound for r3 + 2 in terms of #. Multiply the second 

equation of (2.2) by (n - # - 2)/3 and subtract the third equation of (2.2), one 

computes that 

( n -  # -  2) - r3 n ( n -  1)p 
(2.8) 3! -> 3![G[ 

Namely, 

(2.9) (r3 + 2) < n - # + [n(n - 1)#/IGI], 

where Ix] denotes the integral part of x. 

As a trivial application of (2.9), we have r3 + 2 _< n - �89 since IGI > n (n  - 1)2 

for G 2-transitive but not sharply. The equality (r3 + 2) = n - ! #  holds only if 2 
[G I = n (n  - 1)2. This can also be proved directly: the number (r3 + 2) of orbits 

of the stabilizer of two letters is the sum of the number (_< n - #) of orbits of 

length one and the number (<: #/2)  of orbits of length greater than one. 

By (2.7) and the remark above, we have: 

LEMMA 2.2: 

(a) It" # > 2n/3 ,  then so > 2In;  

(b) I f #  = 2n/3 ,  then so > 2 / n  unless Gxu is a subgroup ot" order 2. 
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Remark:  Manning's (cf. [Wi] ) classical bound # > n / 3  + O(vf~) together with 

(2.9) easily gives the weaker inequality So > (5 _ e ) /n  if So > 1In.  But this is a 

little far from the optimal 2In.  

We still assume G is 2-transitive and neither sharply 2-transitive nor 

3-transitive. 

We first consider the affine case. So G is a 2-transitive subgroup of AFLa(q), 

the group of affine semilinear transformations of a d-dimensional space V of 

Fq with n = qd Note that we can identify V as a subgroup of G (acting via 

translation) and G = VGo,  where Go is the stabilizer of 0. So Go is a subgroup 

of FLd(q), the group of semilinear transformations. 

LEMMA 2.3: 

(a) I f  d > 1, then t~ >- (q - 1)n/q.  

(b) I f  d = 1 and q is prime, then # = q - 1. 

(c) I f  d = 1 and q --- q~ with e prime and minimal,  then # > q - qo. 

Proof: Let 1 ~ g E G fixing 0 which moves the fewest points. We may assume 

that g has prime order. If g is linear, then its fixed points form a proper subspace 

and so g moves at least qd _ qd-1 pointS. Otherwise, g is conjugate to a field 

automorphism (this follows by Lang's theorem). It follows that  the number of 

fixed points is %4 where q = q~). If d > 1, the linear case is worst possible. If 

d = 1 and q is prime, then only the linear case occurs. | 

Combining Lemma 2.2 and Lemma 2.3 yields that So > 2 / n  unless q < 3 or 

d = 1 and q --- 4 or 9. If d = 1 and q = 4 or 9, then the result follows easily by 

inspection. 

Moreover, if q = 3, the result follows from Lemma 2.2(b) unless # = 2n /3  and 

G0. has order 2. Let 1 # g 6 G0~. If d = 1 or 2, the result follows by inspection. 

Let g # h be a conjugate of g in Go (since Go is transitive on the nonzero vectors 

in V, such h exists). Then g and h are trivial on some d - 2 dimensional space 

and so are both contained in G0~ for some w. This contradicts the fact that  G0~ 

has order 2. 

So we may assume that  q = 2. If d _< 2, the result follows by inspection. If Go 

does not contain any transvections (i.e. unipotent elements fixing a hyperplane), 

then ~ > 3n/4 .  Lemma 2.2 gives so > 2 /n .  Thus, Go is a transitive subgroup on 

V - {0) of GLa(2) containing transvections. It follows by McLaughlin [Mc] that 

Go = SLd(2) or SPd(2 ) (with d >_ 4 even in the last case). In the first case, Go 
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is 2-transitive on V - {0} and so G is 3-transitive. In the latter case, G0~ has 

3 orbits on nonzero vectors (depending upon the inner product with v) and so 

r3 + 2 = 4. Since # = n/2 and n > 16, the result holds here by Lemma 2.1. 

In fact, one does not need to use McLaughlin's result here. If d _< 3, this is 

obvious. For d > 3, we can find three transvections which act irreducibly on a 

3-dimensional space. If d > 3, this group is contained in G0w for some w. Then 

r3 + 2 < n/4 and # = n/2. The result holds here by Lemma 2.1. 

This completes the proof for the bound so > 2/n for G in the affine case (note 

that this also completes the proof for the general result if G is solvable). 

We now assume that G does not preserve an affine structure on the set. We are 

still assuming that G is 2-transitive but not 3-transitive. It follows easily that G 

contains a simple nonabelian normal subgroup L with L _ G _C Aut(L) (cf. [Wi, 

Ex. 12.4]). The following table lists all such 2-transitive groups aside from the 

cases where L is alternating or a Mathieu group (in which case L is 3-transitive 

- -  note that Mll  has a multiply transitive representations of degree 11 and 12). 

The table lists the simple group L, the permutation degree n, an upper bound 

for n - tt and an upper bound for r3 § 2. 

Unfortunately the table depends upon the classification of finite simple groups 

(see Kantor [Ka]): 

L 

T a b l e  1. 2 - T r a n s i t i v e  A l m o s t  S i m p l e  G r o u p s  

n n - #  r 3 + 2  

L2(q), 4 < q, q not prime q + 1 qU2 + 1 4 

L~ (p), 4 < p, p prime p + 1 2 4 

Sz(q), q --= 22~+1 _> 8 q2 § 1 q2/3 + 1 q § 3 

2G2(q),q---32~+l>27 q 3 + l  q + l  q 2 + q + 4  

U3(q), q > 2 and nonsquare q3 + 1 q + 1 3q + 2 

U3(q), q square q3 + 1 q3/2 + 1 3q + 2 

Ld(q), d > 3 (qd _ 1)/(q -- 1) (qd-1 _ 1)/(q -- 1) 4 

Sp2d(2), d > 3 22d-1 • 2 d-1 224-~ 4 

AT 15 7 4 

L2( l l )  11 3 4 

L2(8) 28 4 16 

HS 176 16 5 

Co3 276 36 4 
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A few comments are in order about the table. In all cases except L -- L2 (8), 

L itself is 2-transitive. The information for the last five cases can be read off 

from [ATLAS]. If L = Ld(q), the action is on the 1-spaces (or hyperplanes) of 

a d-dimensional vector space over Fq and all quantities are easy to compute.  If 

L = U3(q), the action is on singular 1-spaces (singular with respect to a hermitian 

form) in a three dimensional space over Fq2 and the estimates are quite easy to 

obtain. 

If L = Sz(q) or 2G2(q), these estimates follow easily from well known properties 

of the groups (cf. [HB, 10.3.10, 11.13.2]). 

Finally, if L = Sp2d(2 ), then G = L and the point stabilizers are O~a(2 ) and 

the action on the nontrivial orbit is just the natural action of the orthogonal 

group on singular vectors. This easily gives r3 ~- 2 ~- 4. The maximum number of 

fixed points for a nonidentity element is bounded by 1 + k where k is the number 

of singular vectors in a hyperplane. 

In all cases, it follows that  r3 + 2 < p (except L = L2 (p) - As with p = 5 and 

n = 6 in that  case, it follows that  so = 1/3 = 2In  if G = L and so > 2In  for 

G = PGL2(5)). The proof of Theorem 1.3 is complete. II 

To conclude this section, we note that  for those groups G with r2 =- 1 and 

r3 _~ 2, an absolute positive lower bound for So can be obtained. In fact, by an 

inclusion-exclusion argument, one sees that  the alternating sum of equation (2.1) 

with the first three equations of (2.2) gives that  for n > 3, 

(2.10) 

i=0 
-- 1 - r l  + r2 r3 

1 2! 3! 
r2 r3 

2 6 

This can also be checked directly from the the following inclusion-exclusion 

inequality 

- + - = 0 ,  i f i = l , 2 , 3 ,  
< 0 ,  i f i  > 3, 

and the fact that  Sn = 1/IG I > 0. In particular, we have 

COROLLARY 2.4: Let  n > 3. I f  r3 -~  1, then So > 1/3. I f  r2 = 1 and r3 : 2 ,  

then so > 1/6. 
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A similar inclusion-exclusion argument shows that for n > 2, 

(2.11) 

(;) 
i=0  

= 1 - r l  r2  

T + 2 T  
T2 

2 

Si 

Thus, we have 

COROLLARY 2.5: Let n > 2. If  r2 = 1, then so < 1/2. 

3. T h e  g e n e r a l  case  

In this section, we study the general case when G may not be equal to N. Let 

G be a group with a normal subgroup N with G / N  cyclic. Let x denote a 

generator for G/N.  We generalize the notions discussed earlier. We have a 

complete generalization of Theorem 1.3 only for those pair (G, N) which comes 

from a covering of connected smooth projective curves with a totally ramified 

Fq-rational point. First we note the following easy result (which is essentially 

proved in [FGS, w We give a different proof suggested by Miiller. 

LEMMA 3.1: Let G act on a finite set X .  Let r denote the following permutation 

character: r = [Xg[. Let r = r (X)  be the number of common G, N orbits on 

X .  Then 

(1/INI) Z r r. 
gExN 

Proof." Clearly, we may assume that G is transitive on X. Note that N is also 

transitive on X if and only if xg has a fixed point for some g C N. So, N is not 

transitive if and only if both sides of the equation are 0. So assume that  G and 

N are both transitive (so r = 1). 

Set 

y : e x N  • Xlxg( ) = 

Let G~ be the point stabilizer in G o f t  (and similarly for N). On one hand, IYI = 

~ge xN r On the other hand, ifw E X and xg fixes w, then G ~ N x N  = xgN~. 

In particular, there are IN~[ elements in G~ N xN.  Thus, [Y] = [XI[N~ [ = [N I 

as desired. 1 
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Now assume that  G and N are both transitive on X. We will denote the 

cardinality of X by n. By passing to a quotient, we may always reduce to the 

case that G is faithful on X. We assume that from now on. 

Let Si be the set of elements in the coset xN which fix exactly i elements 

of X. Let si : ]Sil/INI. Let ri be the number of common G, N orbits on the 

/-fold cartesian product of X with the diagonals removed (so all coordinates are 

distinct). 

We first note that: 

LEMMA 3.2: The following are equivalent: 

(a) r2 : 0; 

(b) So = 0; 

(c) every element in the coset x N  fixes a unique point; 

(d) every element in the coset xN fixes at most one point; 

(e) every element in the coset x N  fixes at least one point. 

Proof: The equivalence of (c)-(e) follows from Lemma 3.1 (see also [FGS, 13.1]). 

Clearly (b) and (e) are equivalent. Note G(a, b) = N(a, b) if and only if some 

element in x N  fixes (a, b). So r2 # 0 is equivalent to some element in xN fixing 

at least two points. Thus, (a) is equivalent to (d). | 

The triple (G, N, X) is called exceptional if it satisfies the above conditions. If 

G is the arithmetic monodromy group of a branched covering (always separable) 

of connected smooth projective curves over a finite field and N is the geometric 

monodromy group, then these triples correspond to exceptional coverings (see 

[FGS]). 

LEMMA 3.3: Let H be a point stabilizer of some point of X. Let K be a subgroup 

of G containing H. Let Y be the coset space G / K  and Z the coset space K / H .  

(a) so(C, N, x )  >_ so(C, N, r ) ;  
(b) if (G, N, Y)  is exceptional, then so(G, N, X)  = so(K, N n K, Z); and 

(c) (G, N, X)  is exceptional if and only if (G, N, Y) and (K, N N K, Z) are 

exceptional. 

Proof: Since N is transitive, it follows that G = H N  = K N  and so x (N  n K) 

generates K / ( N  N K).  If x fixes no point in Y, then clearly it fixes no point in 

X, whence (a). 
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Assume that (G, N, Y) is exceptional. Let Ky denote the stabilizer of a point 

y C Y. Then x N  is a disjoint union of the x N  A Ky, y C Y (since each element of 

x N  fixes a unique point of Y). The number of fixed point free elements in each 

intersection is independent of y (since these sets are all conjugate). Thus, the 

number of fixed point free elements on X is [Y[S0(K, K n N, Z) and (b) holds. 

I f X  is exceptional, then (a) implies Y is. On the other hand, i fY is exceptional, 

then (b) implies that X is exceptional if and only if Z is. This proves (c), which 

can also be easily deduced from Lemma 3.2. | 

In [FGS], it was proved that if (G, N, X) is an exceptional triple with G prim- 

itive on X which corresponds to an exceptional covering of connected smooth 

projective curves over a finite field with a rational point that is totally ramified 

(e.g., if f is an exceptional polynomial), then G was shown to be either a solvable 

group of prime degree or an affine group of degree a power of the characteristic 

or one additional infinite family in characteristic 2 or 3. Moreover, the previ- 

ous lemma shows that any exceptional covering is a composition of primitive 

exceptional coverings (see lEGS]). 

Now assume that r2 _> 1. Arguing exactly as in Section 2, we obtain: 

(n - 2)r2 - r3 
(3.1) so >__ rA + 

n n ( n  - ~) 

Moreover, the last term on the right is strictly positive unless for each (a, b) 

with G(a, b) = N(a,  b), Ga,b = 1. Since G = NGa,b, this implies that G = N and 

G is a Frobenius group. This case has already been handled. Lemmas 2.1-2.2 

are also valid in the present more general case. 

Thus, we have shown: 

LEMMA 3.4: 

(a) I f  r2 > O, then either so > r2/n or G = N is a Frobenius group (or regular 

group) on X .  

(b) I f  G = N is a Frobenius group (or regular group) on X ,  then So = r2/n.  

(c) I f  r2 > 1, then so >_ 2 /n  with equality holding i f  and only i f  either G = N 

is a Frobenius group of  order n(n - 1)/2 with n an odd prime power or 

G = N is cyclic of  order 3. 

(d) I f  r2 = 1, then so >_ 1In with equality i f  and only i f  G = N is a F~obenius 

group of  order n(n - 1) with n a prime power or G = N is cyclic of  order 

2. 
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If G is a Frobenius group and G ~ N, then every element in x N  has at most 

one fixed point, whence exactly one and so G is exceptional. 

LEMMA 3.5: If  G is not primitive on X,  then one of the following holds: 

(a) So > 2/n; 

(b) (G, N, X) is exceptional; or 

(c) n = 4, G has order 8, N has order 4 and So = 2In. 

Proof: If r2 = 0, then the triple is exceptional. If  r2 > 1, then so > 2In unless 

G is Frobenius of order n(n - 1)/2 and so is primitive. 

So we may assume that  r2 = 1. If G = N,  then G is 2-transitive and primitive. 

First consider the case that  n = 4. I t  follows that  G is a 2-group (otherwise 

G is 2-transitive). If  it has order 4, then G acts regularly, whence So >_ 3In. 

Otherwise, G is dihedral of order 8. If G = N,  So = 5/8. If  G r N, then N 

has order 4 and since every nonidentity element has either 0 or 2 fixed points, 

So = 1/2. 

Suppose G is not primitive on X.  Let H be the stabilizer of a point in X and let 

H < K < G. Set Y = G/K.  If  (G, N, Y) is not exceptional, then so(Y) >_ 1/m 

where m = [G: K]. Clearly, so(Y) >_ So (by Lemma 3.2). Thus, so(Y) >_ 2/n 

with equality possible only if n = 2m and G acting on Y is a Frobenius group 

order m(m - 1). If g E x N  has no fixed points on Y, then clearly this is also 

true on X. The number of such elements is [S0(Y)l >__ (2/n)INI. If  m > 2, then 

some element in x N  acts nontrivially on Y but with fixed points. We may then 

assume that  x c K.  Since K M N  ~ H M N  (as G = H N  = K N  and K > H),  we 

may also assume that  x ~t H.  Then x has a unique fixed point on Y. Thus, the 

only possible fixed points for x on X are gH with g C K.  Since x ~ H,  x fixes 

no such point and so has none on X. Hence so > so(Y) >_ 2/n. If m = 2, then 

n = 4 and (c) holds. 

If  (G, N, Y) is exceptional, then (K, N M K,  Z) is not (where Z = K/H) .  

Then each element in x N  fixes a unique coset of K,  whence (Lemma 3.2) So = 

so(K, N N K, Z) >_ 1/m where m = [K: H]. Since degree 2 permutat ion repre- 

sentations are not exceptional, m > 2. Hence so >_ 3/n. | 

One can use induction and the previous result to show that  if X = G / H  and 

there is a chain of subgroups H = H0 < H1 < . . .  < Hd < G, then either X is 

exceptional or So > 2d-1/n. 
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We would like to classify all triples with So <_ 2/n. By the previous lemmas, it 

suffices to consider the primitive case. 

We will not classify all possibilities, but we assume that  G is the arithmetic 

monodromy group of a branched covering of connected smooth projective curves 

defined over a finite field and N is the geometric monodromy group. Moreover, 

we will further assume that  there is a totally ramified Fq-rational point (e.g., a 

polynomial map from F 1 to IP 1 - -  so oo is the totally ramified point). Without  loss 

of generality by Lemma 3.5, we also assume that  the covering is indecomposable 

of degree n. Thus, G is a primitive (faithful) permutat ion group of degree n. 

As noted above, exceptional groups (corresponding to monodromy groups of 

exceptional covers with a totally ramified rational point) were essentially classified 

in [FGS] (exactly which affine groups are possible was left open). In [GS], a list 

of possibilities for G (and the permutat ion action) were determined. 

THEOREM 3.6: Let ~: X --* Y be a separable branched covering of  degree n 

with X ,  ]I, ~ defined over Fq. Assume moreover that one of the branch points is 

totally ramified and is Fq-rational. Let p be the characteristic o f F .  Let G be the 

arithmetic monodromy group of  the covering and N the geometric monodromy 

group. Then one of  the following holds: 

(a) r2 = 0 and the covering is exceptional; 

(b) r2 = 1 , So = 1/n and G = N is ~robenius of  order n(n - 1) with n a pr ime 

or pa ; 

(C) r2 = 2, SO = 2In and G = N is Frobenius of  order n(n - 1)/2 with n an 

odd prime or pa (with p > 2); 

(d) so > 2/n; or 

(e) n <_ 6, G = N and l / n  <_ so <_ 2 /n  or n = 4, [G/N[ = 2 and so = 2/4. 

Proof." By Lemma 3.5, we may assume that  the cover is indecomposable (over 

Fq). By the preceding remarks, we may assume that  r2 -- 1. 

First assume that  G is affine and n -- r a for some prime power r. By Lemmas 

2.2 and 2.3, it follows that  So > 2/n  unless n = 4 or 9 or r < 3. We identify X 

with a vector space V of over the field of r elements. Then Go, the stabilizer of 

0, is a group of semilinear transformations on V. 

If  n = r = 4, then G = At or $4. If  G = A4 and N has order 4, then G is 

exceptional. If  G = N = A4, then G is Frobenius. 

If  n = 9, then by inspection it follows that  either G = N is Frobenius, G is 
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exceptional,  or so _> 1/3. 

Next  assume q = 3, n --- 3 a > 9 and r2 = 1. I t  follows f rom L e m m a s  2.2 

and 2.3 tha t  ei ther G is Frobenius, so > 2In  or we may  assume tha t  x is a 

reflection and Go,v has order 2 for any v r 0 fixed by x. If  w is fixed by x, then  

G(0, w) = N(0 ,  w). Since r2 -- 1, it follows tha t  the nonzero elements  of the fixed 

hyperp lane  W of x is contained in a single G0-orbit .  Let u be a vector  in the - 1  

eigenspace of x. Since G0,v = {x}, the centralizer of x is t ransi t ive on the nonzero 

elements  in W. Moreover,  since Go is irreducible on V (by pr imit ivi ty) ,  it follows 

tha t  Gou = Gov. Thus,  some reflection x ~ centralizes u. Since a > 2, x and x t 

bo th  fix some nonzero vector  w in W. Then  G0,w has order greater  t han  2. Since 

v and w are in the same G0-orbit ,  the same is t rue  for G0,v, a contradiction.  

Now assume r = 2, n = 2 a > 4, and r2 = 1. We may  assume tha t  x fixes 0. 

If xNo does not  contain a t ransvection,  then the minimal  degree of an element 

in x N  is (3 /4)n  and So > 2In  (by the a rgument  of L e m m a  2.2). So we may  

assume tha t  x is a t ransvection.  Let W be the fixed hyperplane  of x. Since 

N(0 ,  w) = G(0, w) for any nonzero element of W and r2 = 1, G(0, w) = G(0, v) 

and all nonzero vectors of W are in the same G0-orbit .  

Let H be the subgroup of Go generated by transvections.  Since all nonzero 

vectors in W are in the same G0-orbit ,  for each 0 r w E W, there is a t ransvec-  

t ion vw centered on w. This  implies tha t  the only possible nontr ivial  invariant  

subspace is W. Since H is normal  in Go, this would imply tha t  Go would leave W 

invariant,  a contradict ion.  I t  follows by [Mc] tha t  the only irreducible subgroups  

of GL(V) )  for which a single orbit  contains all nonzero vectors in a hyperplane  

are SL(V) or Sp(V).  Now argue as above. 

I t  follows by [GS] t ha t  in the affine case n = p~, n is pr ime or n = 4. 

So we may  assume tha t  G is not affine. Now using [GS], we have the following 

cases to consider: 

(i) F*(G)  = L is simple and is given [GS, 3.1]; 

(ii) F * ( G )  = L • L with  L simple and n = 4p 2~, p odd given in [GS, 4.2]; 

(iii) F*(G)  = Pf l+(q) ,  n = q(q2 _ 1) / (2 ,q  - 1) with q > 4; 

( iv )  n = p ~  

We first note t ha t  if G is 2-transi t ive (in part icular ,  if G = N and r2 = 1), then  

we argue precisely as above in the 2-transit ive case. If  G is a rank  3 p e r m u t a t i o n  

group (i.e. Ga has three orbits) ,  then r2 = 0 or r2 = 2 and we are done. 

Consider  (i). The  following are immedia te  consequences of [GS, 3.1]. I f  L is 
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a sporadic simple group, then r2 > 1 or G is 2-transitive. If L is an alternating 

group (which is not a classical group), then G is either 2-transitive or rank 3. 

Moreover, L is not an exceptional Chevalley group. Thus, the remaining case is 

L classical. 

In case B(i) of [GS, 3.1], L is an even dimensional unitary group (at least 4 

dimensional) or an orthogonal group (of dimension at least 3 and + type in even 

dimension) and the point stabilizer (in L) may be taken to be the stabilizer of 

a nonsingular 1-space (of - type if L is an odd dimensional orthogonal group). 

Note that  case (iii) above also is of the same type (except that  L is not simple). In 

the unitary case, it follows that  r2 > 1 (the pairs of 1-spaces represented by (u, v) 

with (u, v)/(u, u) either 0 or 1 correspond to L-orbits which are Aut(L)-orbits).  

Similarly, r2 > 1 for orthogonal groups in dimension at least 4 for fields of odd 

characteristic and even dimensional orthogonal groups in even characteristic. 

Next consider the three dimensional orthogonal groups. In this case, L = 

~3(q) = L2(q). We may assume that  q >__ 4. If q = 4, G is 2-transitive and if 

q = 5, G is rank 3, so we may assume that  q > 5. We can identify X with the 

set of orbits of size 2 on p1 of the field automorphism a defined by a ~ a q. 

We claim that  any nonidentity element fixes at most (4/q)n points. I t  suffices 

to consider elements of prime order. If g has odd prime order, then it fixes an 

orbit of size 2 of a only if it fixes each point. If  g E PGL2(q), then g fixes 

at most 2 points in p 1  whence g fixes at most 1 point in X. Otherwise g is 

conjugate to an element inducing a field automorphism, whence g fixes at most 

(q2/3 _ ql/3)/2 points on X and the claim holds. If  g is an involution and 

g E PGL2(q), then g fixes at most (2q + 4)n/(q 2 -q )  points and the claim holds. 

Finally, if g is an involution conjugate to a field automorphism, then g will fix 

at most (q0 + 1)n/(q + 1)q0 points on X, where q2 = q (note q is a square in 

this case). In particular, # > (2/3)n for q > 11. It  follows by Lemma 2.2 that  

either G is exceptional or that  So > 2In. If q = 8, G = N and r2 = 3 or G is 

exceptional. If  q = 9, one checks directly that  r2 :> 1. 

If q = 7, then either G = N and r2 = 6 or IG/NI = 2. In the latter case, we 

compute that  r2 = 1 and so = 1/3. 

It  follows by [FGS] that  G is exceptional only if G = Aut(L) with q = r a for 

r = 2, 3 and a odd (and L _< N _< M where M / L  is the Frattini subgroup of 

alL) .  
a 

Next consider L = 2m+1(2 ) = SP2m(2~). Then Aut(L) has order a. It  
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follows that  # > (2/3)n (cf. [LS]) for a > 1 and we can apply Lemma 2.2. If 

a --- 1, then G is 2-transitive. 

The only remaining cases with L classical are given in [GS, Table B]. We may 

eliminate the cases where G = N - -  in particular, those cases where N -- Aut(L).  

This leaves 4 cases to consider, (L, La) = (L4(2), GL2(4).2), (L5(2), P2), (f~+(2), 

Ag) and (Pf]+(3),  ft+(2)). In all cases, it is verified that  r2 > 1. 

Next consider the case that  E = F*(G) = Lx • "'" x Lt with Li ~ L a 

nonabelian simple group and Ea = K1 x . . .  • Kt with Ki nontrivial. Let g = 

[Li: K~] and n = gt with t > 1. Moreover, we assume that  the Li and Ki are all 

conjugate in G. Since G I N  is cyclic, it follows that  E < N. We further assume 

that  K1 acting on L1/K1 has a nontrivial unique orbit of maximal  size. If N is 

transitive on the L~, then it is easy to see that  r2 > 1. Thus, it follows that  no 

element of the coset x N  can normalize each Li. 

As we observed, we may assume that  no element in x N  normalizes each Li. 

This implies that  any element of x N  fixes at most (n/g) < n /5  points. We can 

apply a version of (2.7) above (with # replaced by the minimal degree of an 

element in the eoset xN)  to obtain So > (2/n). 

By [GS, 4.1 and 4.2], it now follows that  so > (2/n) in cases (ii) and (iv) above. 

| 

Remark: There should be a version of the previous result without the assump- 

tion that  we are dealing with monodromy groups of polynomials (or more gen- 

erally coverings with a totally ramified rational point). If  r2 r 1, it follows from 

the earlier discussion. This suggests that  a proof may require a classification of 

the possibilities with r2 -- 1. A proof along the lines of [FGS] might be feasible. 

Note that  we already had to deal with one case with r2 = 1 (but the group was 

not 2-transitive) in the proof of the previous result. We do prove a weaker version 

of the previous theorem in Section 5. 

We conclude this section with a simple lower bound on Vf, which is proved in 

the same way as Corollary 2.5. 

PROPOSITION 3.7: Let c~: X ~ Y be a separable covering of degree n with 

X ,  Y, a defined over Fq. Assume that the fiber product X x y X has exactly one 

absolutely irreducible component defined over Fq other than the diagonal. Then 

Vf > q/2 + 0(ql /2) .  

Note that  r2 + 1 is the number of absolutely irreducible components of the 
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fiber product above. So the assumption in the previous proposition is equivalent 

to r2 = 1. The asymptotic  result means that  we let q ~ oo in such a way that  

the hypothesis is still satisfied (this just amounts to taking extensions relatively 

prime to the degree of the smallest field over which every irreducible component 

over an algebraic closure of Fq of the fiber product is defined). See [U] for a 

similar result. 

4. Coverings with a totally ramified point 

In this section, we show that  for coverings of degree prime to the characteristic 

with a totally ramified point, an absolute positive lower bound for So can be 

obtained. We note that  Corollary 2.4 (with an identical proof) is also valid for 

the more general (G, N)  case. 

THEOREM 4.1 : Let f:  X ~ Y be an indecomposable separable covering of  degree 

n defined over a finite field Fq of  characteristic p. Assume that f has a totally 

and tamely ramified Fq-point (so p does not divide n). Let N be the geometric 

monodromy group o f f  and G its arithmetic monodromy group. Then one of  the 

following holds: 

(a) G is a Frobenius or regular group of  degree n a prime and either 

(i) G • N and the cover is exceptional; or 

(ii) G = N has order nd for some dl(n - 1) and So = (n - 1)/dn; or 

(b) G and N are 3-transitive of  degree n, r2 = r3 = 1 and so > 1/3; or 

(c) G and N are 2-transitive of degree n, r2 = 1, r3 = 2 and So > 1/6. 

Proof'. Since f is indecomposable, it follows that  G is primitive. Since there 

is a totally ramified point (and p does not divide n), N contains an n-cycle. I t  

follows (of. [Wi]) that  G is 2-transitive or n is a prime and G" = 1. In the latter 

case, G is a Frobenius or cyclic group of order nd for some dl(n - 1). The fixed 

point free elements in G are precisely the n - 1 elements of order n, whence (a) 

holds. 

So we may assume that  G is 2-transitive and G" # 1. Any 2-transitive group 

is either almost simple or affine. The only affine group with G" # 1 containing 

an n-cycle is $4 (with n = 4) which is 3-transitive. If G = $4, then since N 

contains an 4-cycle and G / N  is cyclic, it follows that  G = N. More generally, it 

follows by inspection of the 3-transitive almost simple groups that  N would also 

be 3-transitive. Corollary 2.4 yields So > 1/3 in this case. 
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So finally consider the case that G is almost simple and is 2-transitive but not 

3-transitive containing an n-cycle. It follows by inspection (see Table 1) that 

r3 = 2 in this case. Corollary 2.4 yields So > 1/6. | 

We consider in some detail the case G = N is a Frobenius group of order nd 

with n prime or cyclic of order n with n prime. We will show that  under suitable 

conditions that  if the genus is small, then so is d. The next results are quite easy 

if we assume that all ramification is tame. 

We first review the Riemann-Hurwitz formula. See [Ha t and IS1]. Let f :  X 

Y be a separable branched covering of connected smooth projective curves X 

and Y of degree n. Let B be the finite set of branch points (i.e. those points 

that ramify). Let L = F ( X )  and K = F(Y)  be the function fields of the curves. 

Let g(X) and g(Y) denote the genus of X and Y. If x E X, define a(x) = v(:D~), 

where :D~ is the different of the extension L~/Kf(~) and v is the corresponding 

discrete valuation on L~. Let e = e(x) denote the degree of ramification. We 

note the following (cf. [Ha, p. 301] or [S1]): 

(a) if there is no ramification, then a(x) = 0; 

(b) if there is tame ramification of degree e, then a(x) = e - 1; 

(c) if there is wild ramification (i.e. pie), then a(x) >_ e, 

Set A(y) = ~ e f _ , ( y ) a ( x ) .  Then (cf. [Ha, p. 301]) 

2 ( g ( X ) -  1) -- 2n(g(Y) - 1) + E A(y). 
yEB 

Let G denote the monodromy group of the cover. Let Iy denote an inertia 

group of a point over y. If there is only tame ramification over y, then I u -- (gu) 

and A(y) is ind(gu) := n - orb(gy), where orb(g) is the number of orbits of g in 

the associated permutation representation of degree n. 

Moreover, if all points are tamely ramified (in particular, if the order of the 

monodromy group is not a multiple of the characteristic), then, by a result of 

Grothendieck (see [Gr] or [Fu]), we may order the branch points Yl , . - . ,  Yr and 

choose gi, a generator for Iy~ such that G = (g l , . . .  ,gr} and gl"" "g~ = 1. In any 

case, if Iy has orbits of size of nl . . . . .  nt, then ~(y) _> E n~, where n~ = n~ for 

plni and n~ = n~ - 1 otherwise. 

Now, in particular, assume that p ~ n is prime and G is a Frobenius group of 

order nd (if d = 1, then G is cyclic) as above. Thus, every nonidentity element 
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has at most one fixed point. So either g is an n-cycle or a product of (n - 1)/b 

cycles each of length b. Thus if w is a point of Y, one of the following holds: 

(d) w is totally ramified and A(w) = n - 1; 

(e) w is tamely but not totally ramified and A(w) = (b - 1)(n - 1)/b where the 

inertia group of a point over w has order b; or 

(f) w is wildly ramified and A(w) ___ n - 1. 

In particular, if w is ramified, then A(w) _> (n - 1)/2. 

We will show below (Theorem 4.5) that these conditions force d small compared 

to g(X) .  In particular, if g(X)  = 0, then it is quite easy to see (and follows from 

Proposition 4.4) that d _< 2 (see also [Frl]). Indeed, the proof shows that  the 

Galois closure also has genus zero. We state this result separately. 

LEMMA 4.2: Let f be a polynomial of  prime degree n with n ~ p. I f  the 

geometric monodromy group N o f f  is a Frobenius group, then N is either cyclic 

or dihedral. Moreover, the Galois closure of  the cover f:  p1 _~ y l  has genus zero 

and one of  the following holds: 

(a) N is cyclic and there are 2 branch points; 

(b) N is dihedral, p ~ 2 and there are 3 branch points; or 

(c) N is dihedral, p = 2 and there are 2 branch points exactly one of  which is 

wildly ramified. 

COROLLARY 4.3: Assume that f :  p1 __+ ~1 i8 a polynomial over Fq of  degree n 

with n prime to the characteristic p. I f  so > O, then So > 1/6. 

Proof: Since (p, n) = 1, the cover defined by f is automatically separable. 

Without loss of generality, we may assume that f is indecomposable over Fq. By 

Theorem 4.1, it suffices to assume that G = N is Frobenius or regular and n is 

prime. By Lemma 4.2, this implies that [G[ = n or 2n. Then So = (n - 1)~rid >_ 

(n - 1)/2n > 1/6. | 

In order to obtain an analog of Corollary 4.3 for curves of higher genus, we 

need to consider coverings with Frobenius monodromy group with a totally and 

tamely ramified point. 

We separate out the case of two branch points since the argument is entirely 

different. 

LEMMA 4.4: Let X be a curve of  genus g over an algebraically closed field F of  

characteristic p >_ O. Suppose f:  X -~ p1 is a separable indecomposable branched 



Vol. 101, 1997 FIXED POINT FREE ELEMENTS 277 

covering of prime degree n ~ p with at most two branch points. Let g denote the 

genus of X.  Assume that there is a branch point that is totally ramified and that 

the monodromy group is Frobenius of order nd (so dJ(n - 1)). Then d <_ 2g + 2 

(i~pr 2, d<<_9+2). 

Proof: Let C be the normal subgroup of G of order n. Let B denote a subgroup 

of order d. Let W denote the curve corresponding to the Galois closure of the 

covering. Let V denote the curve corresponding to the fixed field of C. Thus, 

V/P  1 is a cyclic cover of degree d. We assume that  B corresponds to X in the 

Galois correspondence. 

Of course, there are no unramified coverings of p1, so that  there must be at 

least one branch point. If  there is a single branch point, then p > 0 and G is 

generated by its Sylow p-subgroups. Since y is totally ramified, this implies that  

n = p, whence G has order p and d = 1. 

So we assume that  there are precisely two branch points and d > 1 (since there 

is nothing to prove if d = 1). 

If both  branch points are tamely ramified, then G = (s, t) where s and t 

generate inertia groups over the branch points and st = 1. Thus, G is cyclic and 

d = l .  

Assume y is totally ramified. Then the inertia group of a point over y is cyclic 

of order n, whence A(y) = n - 1. Thus, y is tamely ramified and is not a branch 

point in the cover V/F 1. I t  follows that  V/P 1 is a cyclic cover of degree d and has 

single branch point z, whence d = pa for some a. Moreover, the inertia group of 

a point in W over y is C and the inertia group of a point in W over z is conjugate 

to B. Let w denote the unique point of W with inertia group B (w lies over z 

and since B is its own normalizer, there is only one point in W with inertia group 

B). 

Let v C V and x E X be the points under w (and so over z). If  we complete 

at w, then F(W)w = F(V)v and F(X)x = F(F1)z. We identify B with the 

monodromy group of the cover V/P 1. Thus, the higher ramification groups Bi of 

v (for V/P 1) and w (for the cover W / X )  agree. Moreover, V/]P 1 and W / X  each 

are ramified 'at  a single point (z and x respectively) and these points are totally 

ramified. Using the Riemann-Hurwitz  formula (see also [S1, p. 64]) to compute 

the genus (with respect to these two Galois covers), we see that  if g(V) and g (W) 
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are the genus of V and W, then 

2(g(W) - 1) = 2d(g - 1) + }-~(IB~I- 1), 
i=0 

and 
O ~  

2(g(v) - 1) = - 2 d +  ~ ( I B ~ I -  1). 
i=0 

Thus, g(W)  = 9(V)  + dE. On the other hand, W / V  is a cyclic cover of degree 

n with precisely d branch points each tamely ramified with inertia group C (the 

points over y - since the point in V over z is unramified to W). Thus 

2(g(W) - 1) = 2n(9(V) - 1) + d(n - 1), and 

2dE = (2n - 2 ) ( g ( V )  - 1) + d (n  - 1). 

Hence 2g >_ ( d - 2 ) ( n - 1 ) / d >  d - 2  and d<_ 2 g + 2 .  More generally, if we 

factor n - 1 = pbm where p does not divide m, we see that  d <_ (2/m)g + 2. | 

THEOREM 4.5: Let f: X ~ Y be a branched covering of prime degree n r p 

which is tamely and totally rami~ed at some point y C Y .  Assume that the 

geometric monodromy group of f is Frobenius of order rid. Let g be the genus 

of X and h the genus of Y.  Then one of the following occurs: 

(a) h > 0 a n d g > g - h > d / 2 ;  

(b) h = 0 = g, d _< 2 and the Galois closure of the cover has genus zero; or 

(c) d _< 4g. 

Proof." Note the inertia group of a point over y acts transitively (because of 

the total  ramification). Let B denote the set of branch points. We use the 

observations (d)-(g) above. 

I f h  > 0, t h e n 2 ( g - h )  > A(y) = n - 1  _> d a n d  (a) holds. So assume that  

h = 0. The Riemann-Hurwitz  formula in this case is: 

2 ( ~  + g - 1) = ~ ~ ( z ) .  
zEB 

If IBI _< 2, the result follows from the previous lemma (since 4g > 2g + 2 for 

g > 0 ) .  
So assume tha t  IBI > 3. Note that  A(w) >_ (n - 1)/2 for every w c B. If some 

point z is wildly ramified, its contribution to the Riemann-Hurwitz  formula is at 

least n - 1, whence 2g >_ (n - 1)/2 >_ d/2. Thus, d _< 4g. 
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Similarly, if ]B] >_ 4, it follows that  E A(w) > 3(n - 1)/2 + (n - 1). Hence, 

the Riemann-Hurwitz  formula yields 2g > (n - 1)/2 >_ d/2, and again we obtain 

d < 4 g .  

So we may assume that  there are three branch points and no wild ramification. 

Let y = Yl, Y2, Y3 denote the branch points. Thus, G = <gl, g2, g3) where glg2g3 = 

1 with g~ a generator of an inertia group over yi. Since gl has order n, it generates 

the normal subgroup C of G. Thus, G / C  is generated by the image of g~ and ga 

maps to its inverse. Hence g2 and g3 each have order d. Thus A(yl) = n - 1 and 

A(y2) = A(y3) = ( d -  1 ) ( n -  1)/d. It  follows that  2g = 2 ( d -  1 ) ( n -  1 ) / d -  ( n -  1) = 

( n - 1 ) ( d - 2 ) / d > d - 2 .  Thus, d < 2 g + 2 .  

In particular, if g = 0, it follows that  d < 2. Another application of the 

Riemann-Hurwitz  formula shows that  the Galois closure has genus 0. | 

COROLLARY 4.6: Let f :  X ~ Y be a branched covering of  degree n > 1 with n 

prime to p which is totally ramified at some Fq-rational point y. Let g denote 

the genus of X .  I f  so > O, then so > 1/6 for g < 1 and so _> 3/14g for g > 1. 

Proof: Since so >_ 1/n, we may assume that  n > 7. Without loss of generality, we 

may assume that  f is indecomposable. By Theorem 4.1, we may further assume 

that  G = N is a Frobenius group of order nd or cyclic group of n (i.e. d = 1) with 

n prime and so so = ( n - 1 ) / d n .  If g = 0, then d <_ 2 by Theorem 4.5, whence the 

result. If  g >_ 1, again by Theorem 4.5, d <_ 4g. Then so _> (n - 1)/4gn >_ 3/14g. 

If g = 1, this is larger than 1/6. | 

Remarks: We do not know if the bound in the previous result is best possible. 

It is straightforward to see that  if p does not divide n(n - 1) with n > 2 prime, 

then we may realize the I~robenius group of order n(n - 1) and degree n as a 

group of automorphisms of a curve of genus g = (n - 3)/2, whence So = 1/n  is 

approximately 1/2g. 

As we have seen, if we do not assume that  n is prime to the characteristic, then 

the result is false. There should be some version of the previous result where for 

example the bound depends only the power of p dividing n. An analysis of the 

possible monodromy groups for polynomials will be required (see [GS]). 

We can improve Corollary 4.3 slightly if we assume that  all ramification is 

tame (not just  ramification over c~). This essentially follows from the Feit- 

Miiller classification of monodromy groups of indecomposable polynomials in 

characteristic zero and Grothendieck's theorem (that a tamely ramified cover 



280 R, G U R A L N I C K  AND D, WAN Isr. J. Math .  

has a branch cycle description as in the characteristic zero case). 

THEOREM 4.7: Let f:  171 __~ I71 be an indecomposable polynomial of  degree n 

defined over a finite field Fq of  characteristic p. Assume that all ramification is 

tame (in particular, p does not divide n). Let N be the geometric monodromy 

group of  f and G its arithmetic monodromy group. Then one of the following 

holds: 

(a) n <_ 23 and N is triply transitive; 

(b) n is prime, G = N is cyclic of  order n and so = (n - 1)/n; 

(c) n is prime, G = N is dihedral of order 2n and so = (n - 1)/2n; 

(d) n is prime, N is cyclic of order n or dihedral of order 2n, N ~ G and f is 

exceptional; 

(e) G = N and 

(i) n = 11 and G = L2(11); 

(ii) n = 13 and G = PGL3(3);  

(iii) n = 15 and G = As; 

(iv) n = 21 and G = PFL3(4);  

(v) n -- 31 and G - -  L5(2); or 

(f) A n C N C G C S n .  

Proof: By Grothendieck [Gr], we have that  N will occur as the monodromy 

group of an indecomposable polynomial  cover over C. All such possibilities have 

been classified in [M/i] (see also [Fe]). | 

COROLLARY 4.8: Let f:  X -~ Y be a polynomial covering of  degree n defined 

over a finite field Fq of  characteristic p. Assume that all ramification is tame (in 

particular, p does not divide n). Then either so -- 0 or so >_ 16/63. 

Proof: As usual, we may assume tha t  f is indecomposable. We apply the 

previous result. If N is 3-transitive, then So _> 1/3. The  bound clearly holds for 

N cyclic or dihedral. So we are left only to verify the bound in (e) above. This 

is an easy calculation using [ATLAS]. | 

Note tha t  16/63 occurs when n = 21 and G = N = PFL3(4).  Thus, the bound 

is best possible in the previous result. 
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5. Higher dimensional varieties 

In this section, we briefly discuss some generalizations of the previous curve 

results to higher dimensional varieties in the setting of [$2, Theorem 3.6.2]. 

Let Y and Z be two m-dimensional absolutely irreducible (quasi-projective) 

varieties defined over Fq. Let f:  Y ~ Z be a generically surjective and separable 

morphism of degree n defined over Fq, where n is a positive integer. The map f is 

actually a finite map if we remove suitable co-dimension 1 subvarieties from Y and 

Z. Let D be the (quasi-projective) variety defined by the fiber product Y x z Y 

with its diagonal removed. The variety D over Fq is also at most m-dimensional 

if f is finite. The set D(Fq) consists of the pairs (P1, P2) of Fq-rational points 

in Y(Fq) such that P1 ~ P2 and f (P1)  = f(P2). Let V I be the cardinality of the 

value set f (Y(Fq)) .  

THEOREM 5.1: I f  f is a finite map, then we have the inequality 

(5.1) V I <_ [V(Fq) I [D(Fq)I 
n 

Proof: Since f is a finite map of degree n, for each point P E Z, the inverse 

image f - l ( p )  has cardinality at most n. For 0 < i < n, let si be the number of 

Fq-rational points P G Z(Fq) such that f - l ( p )  A Y(Fq) has cardinality i. By 

this definition, one then checks directly that 

(5.2) 

and 

( 2 -  1)s2 + ( 3 -  1)s3 + - . - +  ( n -  1)sn -- [Y(Fq) I - VI 

(5.3) 2 ( 2 -  1)s2 + 3 ( 3 -  1)s3 + - ' - +  n ( n -  1)sn = ID(Fq)[. 

Multiply equation (5.2) by n and subtract (5.3), we deduce that 

n--1 

(5.4) n(]Y(Fq)[ - 11"i) - [D(Yq) 1 = E ( n  - j ) ( j  - 1)sj >_ O. 
j=2 

This immediately gives (5.1). The proof is complete. | 

Definition 5.2: A finite and separable morphism f:  Y ~ Z is called excep- 

tional over Fq if the variety D as above has no absolutely irreducible components 

of (top) dimension m defined over Fq. A generically surjective and separable 

morphism f:  Y ) Z as above is called exceptional if its restriction to some 

dense open set is a finite and exceptional map. 
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THEOREM 5.3: Let f: Y ~ Z be a generically surjective and separable mor- 

phism of degree n, where Y and Z are absolutely irreducible m-dimensional 

Fq-varieties. 

(i) f f  f is not exceptional over Fq, then 

(5.5) Vf < ( l - 1 )  qm +O(qm-W2). 

(ii) If f is exceptional over Fq, then 

(5.6) ID(Fq)[ = O(qm-1), Vf = qm + O(qm-1/2). 

Proof: Since any variety of dimension m - 1 over Fq has at most O(q m-l) 

rational points over Fq, by restricting to suitable dense open subsets of Y and 

Z, we may assume that  f is a finite map. Thus, we may assume that  the variety 

D has dimension at most m. 

In case (i), the non-exceptionality of f shows that  the variety D has at least one 

absolutely irreducible component of dimension m defined over Fq. The Lang-  

Weil est imate (a special case of Lemma 5.5 below) shows that  

[Y(Fq)[ : qm q_O(qrn-1/2), [D(Fq)] > qm q_O(q,n--1/2). 

Combining with (5.1), we deduce (5.5). 

In case (ii), the exceptionality of f shows that  the variety D has no absolutely 

irreducible components of top dimension m defined over Fq. Thus, each Fq- 

rational point on D (except those on some co-dimension 1 subvariety of D) is 

contained in an intersection of two distinct geometric components of D. Such 

an intersection has dimension at most m - 1. Thus, the set D(Fq) of all Fq- 

rational points on D is contained in the set of Fq-rational points of some variety 

of dimension at most m - 1. The Lang-Weil estimate shows that  

[D(Fq)] = O(qm--1). 

This is the first equation of (5.6). Combining with equation (5.3) , one deduces 

tha t  s~ = O(q m - l )  for all 2 < i < n. By (5.4), we then conclude that  

(5.7) Vf = [Y(Fq)[ + O(q m-l) = qm + O(qm--1/2). 
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Remarks: If f is exceptional over Fq, the crude estimate ID(Fq)I = O(q m- l )  

in (5.6) can be greatly improved in some cases. For example, if Y and Z are 

absolutely irreducible non-singular projective curves over Fq and f :  Y , Z is 

exceptional over Fq (automatically finite in this case), it is shown in [Le] (already 

in [FGS] if Z = IF 1) that ID(Fq)I = 0. More generally, it is shown in [Le] that 

ID(Fq)I = 0 for exceptional f if one assumes some natural conditions such as 

that  the map f is finite and that the varieties Y and Z are normal. See also [Fr3] 

for earlier results of this nature. 

Similarly, the second estimate in (5.6) can also be improved in some cases. 

For instance, using Lenstra's result as above and Deligne's theorem on Riemann 

hypothesis, one derives immediately that 

qm+l _ 1 
Vf - + O(qm/2), 

q - 1  

if f is an exceptional finite map, Y is a smooth projective complete intersection 

and Z is normal. 

A similar inclusion-exclusion argument as in (2.11) and the Lang-Weil estimate 

shows that Proposition 3.7 carries over to higher dimensional case. We state this 

generalization here. 

PROPOSITION 5.4: Let f: Y --~ Z be a finite and separable map between two 

absolutely irreducible varieties over  Fq .  Assume that the variety D has exactly 

one absolutely irreducible component of dimension ra, then 

1 ra V f  > ~q -b O(qm--1/2) .  

To extend other curve results stated in the introduction, we shall need to use 

group theory. This can be done exactly as the curve case because of the following 

asymptotic formula, which is an immediate consequence of the higher dimensional 

Cebotarev density theorem [Fr2]. 

LEMMA 5.5: Let f: Y , Z be a generically surjective and separable morphism 

between absolutely irreducible m-dimensional varieties Y and Z defined over F q. 

Let G (resp. N)  be the arithmetic (resp. geometric) monodromy group of the 

map f . Let x N  be the coset which is the Frobenius generator of the cyclic group 

GIN. Then, we have the formula for the value set cardinality V f  = ]f(Y(Fq) )[: 

Vf = (1 - so)q m + O(qm-1/2), 
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where So = ISo[/]N] and So is the set of fixed point free elements in x N  as before. 

In the special case Y = Z and f is the identity map (thus so = 0), the above 

lemma reduces to the well known Lang-Weil estimate. By Theorem 1.3, we 

obtain 

COROLLARY 5.6: Let f: Y -----* Z be a generically surjective and separable map 

of degree n between two m-dimensional absolutely irreducible varieties over Fq. 

Assume that the covering is not exceptional and that the Galois closure of the 

covering is regular (G = N).  Assume further that the monodromy group is not 

a Frobenius group of order n(n - 1). Then for n > 6, we have 

Vf < ( l  -- 2 ) qm + O(qm-l/2), 

with equality holding (asymptotically) if  and only i f  G = N is a Frobenius group 

of order n(n - 1)/2. 

Clearly, stronger results such as Theorem 1.2 can also be extended to some 

higher dimensional cases for regular coverings with suitable total  and tame ram- 

ification assumptions. We can prove a slightly weaker version of Theorem 1.1 

that  applies to higher dimensional varieties and to curves without assuming the 

existence of a totally ramified point. We axe certain that  5/4 can be replaced by 

2 in the next result. 

COROLLARY 5.7: Let f: Y ~ Z be a generically surjective and separable map 

of degree n between two m-dimensional absolutely irreducible varieties over Fq. 

Assume that the covering is not exceptional and that the monodromy group is 

not Frobenius of order n(n - 1). Then for n > 6, 

Vf ~_ ( 1 - 5 )  qm +O(qm-U2).  

Proof We argue as in the 

indecomposabte as a cover. 

groups acting transitively on 

to prove that  so >_ 5/4n. 

proof of Theorem 3.6. We may assume that  f is 

Let G and N be the corresponding monodromy 

the corresponding set X.  By Lemma 5.5, it suffices 

By [LS], it follows that  # > n/3 unless E := F*(G) = L1 • . . .  • Lt, where 

each L~ ~ Ae, the alternating group of degree g (with g _> 5). Moreover, we may 

assume that  in the latter case that  the stabilizer in E of a point is the product 

of stabilizers of k-sets for some k with 1 < k < g/2. 
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If  # > n/3,  then arguing as in section 2, we deduce that  So >_ 5/4n (use the 

analog of 2.9). 

Consider the remaining situation. If N not transitive on the set of Li (by con- 

jugation), then any element of x N  (where x N  generates G / N )  will not normalize 

each L~. I t  follows that  any element of x N  fixes at most n/5  points, and we can 

argue as in the previous paragraph (because we only need to know the minimal 

degree for elements in the coset xN) .  

If N is transitive on the Li, then it is straightforward to compute that  r~ > 2 

unless t = 1 = k. Then, N is 3-transitive and so _> 1/6. 
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